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ABSTRACT

We measure the large-scale real-space power spectrum P (k) using a sample of 205,443 galaxies from the
Sloan Digital Sky Survey, covering 2417 effective square degrees with mean redshift z ≈ 0.1. We employ
a matrix-based method using pseudo-Karhunen-Loève eigenmodes, producing uncorrelated minimum-
variance measurements in 22 k-bands of both the clustering power and its anisotropy due to redshift-space
distortions, with narrow and well-behaved window functions in the range 0.02 h/Mpc < k < 0.3 h/Mpc.
We pay particular attention to modeling, quantifying and correcting for potential systematic errors,
nonlinear redshift distortions and the artificial red-tilt caused by luminosity-dependent bias. Our results
are robust to omitting angular and radial density fluctuations and are consistent between different parts
of the sky. Our final result is a measurement of the real-space matter power spectrum P (k) up to an
unknown overall multiplicative bias factor. Our calculations suggest that this bias factor is independent
of scale to better than a few percent for k < 0.1 h/Mpc, thereby making our results useful for precision
measurements of cosmological parameters in conjunction with data from other experiments such as the
WMAP satellite. The power spectrum is not well-characterized by a single power law, but unambiguously
shows curvature. As a simple characterization of the data, our measurements are well fit by a flat scale-
invariant adiabatic cosmological model with hΩm = 0.213 ± 0.023 and σ8 = 0.89 ± 0.02 for L∗ galaxies,
when fixing the baryon fraction Ωb/Ωm = 0.17 and the Hubble parameter h = 0.72; cosmological
interpretation is given in a companion paper.

Subject headings: large-scale structure of universe — galaxies: statistics — methods: data analysis

1. INTRODUCTION

The spectacular recent cosmic microwave background
(CMB) measurements from the WMAP satellite (Bennett

et al. 2003) and other experiments have increased the im-
portance of non-CMB measurements for the endeavor to
constrain cosmological models and their free parameters.
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These non-CMB constraints are crucially needed for break-
ing CMB degeneracies (Eisenstein et al. 1999; Efstathiou
& Bond 1999; Bridle et al. 2003); for instance, WMAP
alone is consistent with a closed universe with Hubble pa-
rameter h = 0.32 and no cosmological constant (Spergel
et al. 2003; Verde et al. 2003). Yet they are currently
less reliable and precise than the CMB, making them the
limiting factor and weakest link in the quest for precision
cosmology. Much of the near-term progress in cosmology
will therefore be driven by reductions in statistical and
systematic uncertainties of non-CMB probes such as Ly-
man α forest and galaxy clustering and motions, gravita-
tional lensing, cluster studies, and supernovae Ia distance
determinations. Galaxy redshift surveys can play a key
role in breaking degeneracies and providing cross checks
(Tegmark 1997a; Goldberg & Strauss 1998; Wang et al.
1999; Eisenstein et al. 1999), but only if systematics can
be controlled to high precision. The goal of the present
paper is to do just this, using over 200,000 galaxies from
the Sloan Digital Sky Survey (SDSS; York et al. 2000) to
measure the shape of the real-space matter power spec-
trum P (k), accurately quantifying and correcting for the
effects of light-to-mass bias, redshift space distortions, sur-
vey geometry effects and other complications.

The cosmological constraining power of three-dimensional
maps of the Universe provided by galaxy redshift surveys
has motivated ever more ambitious observational efforts
such as the CfA/UZC (Huchra et al. 1990; Falco et al.
1999), LCRS (Shectman et al. 1996), and PSCz (Saun-
ders et al. 2000) surveys, each well in excess of 104 galax-
ies. The current state of the art is the AAT two degree
field galaxy redshift survey (2dFGRS; Colless et al. 2001;
Hawkins et al. 2003; Peacock 2003 and references therein).
Analysis of the first 147,000 2dFGRS galaxies (Peacock et
al. 2001; Percival et al. 2001, 2002; Norberg et al. 2001,
2002; Madgwick et al. 2002) have supported a flat dark-
energy dominated cosmology, as have angular clustering
analyses of the parent catalogs underlying the 2dFGRS
(Efstathiou & Moody 2001) and SDSS (Scranton et al.
2002; Connolly et al. 2002; Tegmark et al. 2002; Szalay et
al. 2003; Dodelson et al. 2002). Tantalizing evidence for
baryonic wiggles in the galaxy power spectrum is presented
by Percival et al. (2001) and Miller et al. (2001a,b, 2002),
and cosmological models have been further constrained in
conjunction with cosmic microwave background (CMB)
data (e.g., Spergel et al. 2003; Verde et al. 2003; Lahav
et al. 2002).

The SDSS is the most ambitious galaxy redshift survey
to date, whose goal, driven by large-scale structure sci-
ence, is to measure of order 106 galaxy redshifts. Zehavi et
al. (2002) computed the correlation function using about
30,000 galaxies from early SDSS data (Stoughton et al.
2002). In conjunction with the first major SDSS data re-
lease in 2003 (hereafter DR1; Abazajian et al. 2003), a se-
ries of papers will address various aspects of the 3D cluster-
ing of a much larger data set involving over 200,000 galax-
ies with redshifts. This paper is focused on measuring the
power galaxy spectrum P (k) on large scales, dealing with
complications such as luminosity-dependent bias and red-
shift distortions only to the extent necessary to recover an
undistorted measurement of the real-space matter power
spectrum. Zehavi et al. (2003a) measure and model the
real space correlation function, mainly on smaller scales,

focusing on departures from power-law behavior, and Ze-
havi et al. (2003b) will study how the correlation function
depends on galaxy properties. Pope et al. (2003) measure
the parameters which characterize the large-scale power
spectrum with a complementary approach involving direct
likelihood analysis on Karhunen-Loève eigenmodes, as op-
posed to the quadratic estimator technique employed in
the present paper.

This paper is organized as follows. In Section 2, we
describe the SDSS data used and how we model it; the
technical details can be found in Appendix A. In Sec-
tion 3, we describe our methodology and present our basic
measurements of both the power spectrum and its redshift-
space anisotropy. The details of the formalism for doing
this are described in Appendix B. In Section 4 we focus
on this anisotropy to model, quantify and correct for the
effects of redshift-space distortions, producing an estimate
of the real-space galaxy power spectrum and testing our
procedure with Monte-Carlo simulations. In Section 5, we
model, quantify and correct for the effects of luminosity-
dependent biasing, producing an estimate of the real-space
matter power spectrum. In Section 6, we test for a variety
of systematic errors. In Section 7, we discuss our results.
The cosmological interpretation of our measurements is
given in a companion paper (Tegmark et al. 2003, here-
after “Paper II”).

2. DATA AND DATA MODELING

The SDSS uses a mosaic CCD camera (Gunn et al. 1998)
to image the sky in five photometric bandpasses denoted
u, g, r, i, z1 (Fukugita et al. 1996). After astrometric
calibration (Pier et al. 2003), photometric data reduction
(Lupton et al. 2003, in preparation; see Lupton et al. 2001
and Stoughton et al. 2002 for summaries) and photometric
calibration (Hogg et al. 2001; Smith et al. 2002), galaxies
are selected for spectroscopic observations using the algo-
rithm described by Strauss et al. (2002). To a good ap-
proximation, the main galaxy sample consists of all galax-
ies with r-band apparent Petrosian magnitude r < 17.77;
see Appendix A. Galaxy spectra are also measured for a
luminous red galaxy sample (Eisenstein et al. 2001), for
which clustering results will be reported in a separate pa-
per. These targets are assigned to spectroscopic plates
by an adaptive tiling algorithm (Blanton et al. 2003) and
observed with a pair of fiber-fed CCD spectrographs (Uo-
moto et al., in preparation), after which the spectroscopic
data reduction and redshift determination are performed
by automated pipelines (Schlegel et al., in preparation;
Frieman et al., in preparation). The rms galaxy redshift
errors are ∼ 30 km/s and hence negligible for the purpose
of the present paper.

Our analysis is based on SDSS sample11 (Blanton et al.
2003c), consisting of the 205,443 galaxies observed before
July 2002, all of which will be included in the upcoming
SDSS Data Release 2. From this basic sample, we produce
a set of subsamples as specified in Table 1. The details of
how this basic sample was processed, modeled and subdi-
vided are given in Appendix A. The bottom line is that
each sample is completely specified by three entities:

1The Fukugita et al. (1996) paper actually defines a slightly dif-
ferent system, denoted u′, g′, r′, i′, z′, but SDSS magnitudes are
now referred to the native filter system of the 2.5m survey telescope,
for which the bandpass notation is unprimed.
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Fig. 1.— The upper panel shows the angular completeness map, the relative probabilities that galaxies in various directions get included,
in Hammer-Aitoff projection in equatorial coordinates on a grayscale ranging from black (0) to white (1). It is this completeness map that we
expand in spherical harmonics. The backdrop is the logarithm of the dust map from Schlegel, Finkbeiner, & Davis (1998), indicating which sky
regions are most likely to be affected by extinction-related systematic errors. The lower panel illustrates the complex nature of the completeness
map and the high average completeness with a zoom of a small sky region.
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1. The galaxy positions (a list of RA, Dec and comoving
redshift space distance r for each galaxy)

2. The radial selection function n̄(r), which gives the
expected (not observed) number density of galaxies
as a function of distance

3. The angular selection function n̄(r̂), which gives the
completeness as a function of direction in the sky

Our samples are constructed so that their three-dimensional
selection function is separable, i.e., simply the product
n̄(r) = n̄(r̂)n̄(r) of an angular and a radial part; here
r ≡ |r| and r̂ ≡ r/r are the comoving radial distance and
the unit vector corresponding to the position r. The con-
version from redshift z to comoving distance was made
for a flat cosmological model with a cosmological constant
ΩΛ = 0.7 — below we will see that our results are insensi-
tive to this assumption.

2.1. Angular selection function

The angular selection function n̄(r̂) is shown in Figure 1.
For the baseline sample, it covers a sky area of 2499 square
degrees. The function n̄(r̂) is defined to be the complete-
ness, i.e., the probability that a galaxy satisfying the sam-
ple cuts actually gets assigned a redshift (including the
6% of the total which are determined based on the nearest
neighbor redshift as described in Appendix A). Therefore
the completeness is a dimensionless number between zero
and one. The effective area is

∫
n̄(r̂)dΩ ≈ 2417 square de-

grees, corresponding to an average completeness of 96.7%.
As detailed in Appendix A.2, we model n̄(r̂) as a piecewise
constant function. We specify this function by giving its
value in each of a large number of disjoint spherical poly-
gons, within each of which it takes a constant value. There
are 2914 such polygons for the baseline sample, encoding
the geometric boundaries of spectroscopic tiles, holes and
other relevant entities. Figure 1 shows that the sky cover-
age naturally separates into three fairly compact regions of
comparable size: north of the Galactic plane (in the cen-
ter of the figure), there is one region on the celestial equa-
tor and another at high declination; south of the Galactic
plane, there is a set of three stripes near the equator. For
the purpose of testing for systematic errors, we define an-
gular subsamples A1, A3 and A4 corresponding to these
regions (see Table 1), which have effective areas of 809,
1007 and 600 square degrees, respectively.

2.2. Radial selection function

Our estimate of the radial selection function for the
baseline sample is shown in Figure 2, together with a his-
togram of the galaxy distances. The full details of the
derivation of the radial selection function can be found in
Appendix A.4, including both evolution and K-corrections.
Our basic sample has magnitude limits r ≥ 14.5 at the
bright end (since the survey becomes incomplete for bright
galaxies with large angular size) and r ≤ 17.5 at the faint
end (Appendix A.4).

Figure 4 shows all galaxies within 5◦ of the equator in
a pie diagram, color coded by their absolute magnitude,
and illustrates one of the fundamental challenges for our
project (and indeed for the analysis of any flux-limited
sample): luminous galaxies dominate the sample at large

Fig. 2.— The redshift distribution of the galaxies in sample safe13
is shown as a histogram and compared with the expected distribution
in the absence of clustering, ln 10n̄(r)r3dΩ (solid curve) in comoving
coordinates assuming a flat ΩΛ = 0.7 cosmology. The bottom panel
shows the ratio of observed and expected distributions. The vertical
lines indicate the redshift limits (50 h−1Mpc < r < 600 h−1Mpc)
employed in the baseline analysis. This near cut removes only 22
galaxies, the far cut 3295.

Fig. 3.— Same as Figure 2 but plotted as comoving number
density. The grey (background) histogram shows the full flux-limited
sample and the others show the volume-limited subsamples, with
lines indicating their predicted constant selection functions.
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Table 1 – The table summarizes the various galaxy samples used in our analysis, listing cuts made on evolution-corrected absolute magnitude
M0.1r (for h = 1), apparent magnitude r and redshift z. M0.1r was computed from r and z assuming a flat cosmological model with ΩΛ = 0.7.

Sample name Abs. mag App. mag Redshift Sq. degrees Galaxies
all All r < 17.5 − 17.77 All 2417 205,443
safe0 All 14.50 < r < 17.50 All 2417 157,389
safe13 −23 < M0.1r < −18.5 14.50 < r < 17.50 0.001 < z < 0.400 2417 146,633
safe22 −22 < M0.1r < −19.0 14.50 < r < 17.50 0.001 < z < 0.400 2417 134,674
baseline −23 < M0.1r < −18.5 14.50 < r < 17.50 0.002 < z < 0.210 2417 143,314
Angular subsamples:
A1 (south) −23 < M0.1r < −18.5 14.50 < r < 17.50 0.017 < z < 0.210 600 35,782
A2 (north) −23 < M0.1r < −18.5 14.50 < r < 17.50 0.017 < z < 0.210 1817 107,532
A3 (north eq) −23 < M0.1r < −18.5 14.50 < r < 17.50 0.017 < z < 0.210 809 52,081
A4 (north rest) −23 < M0.1r < −18.5 14.50 < r < 17.50 0.017 < z < 0.210 1007 55,451
Radial subsamples:
R1 (near) −23 < M0.1r < −18.5 14.50 < r < 17.50 0.017 < z < 0.078 2417 47,954
R2 (mid) −23 < M0.1r < −18.5 14.50 < r < 17.50 0.078 < z < 0.117 2417 47,089
R3 (far) −23 < M0.1r < −18.5 14.50 < r < 17.50 0.117 < z < 0.210 2417 48,271
Luminosity (volume-limited) subsamples:
L1 −17 < M0.1r < −16 14.50 < r < 17.50 0.008 < z < 0.017 2417 455
L2 −18 < M0.1r < −17 14.50 < r < 17.50 0.011 < z < 0.027 2417 1,736
L3 −19 < M0.1r < −18 14.50 < r < 17.50 0.017 < z < 0.042 2417 5,191
L4 −20 < M0.1r < −19 14.50 < r < 17.50 0.027 < z < 0.065 2417 14,356
L5 −21 < M0.1r < −20 14.50 < r < 17.50 0.042 < z < 0.103 2417 31,026
L6 −22 < M0.1r < −21 14.50 < r < 17.50 0.065 < z < 0.157 2417 24,489
L7 −23 < M0.1r < −22 14.50 < r < 17.50 0.104 < z < 0.238 2417 3,594
L8 −24 < M0.1r < −23 14.50 < r < 17.50 0.164 < z < 0.349 2417 95
Mock samples:
M1-M275 (PThalos) 0.015 < z < 0.240 1395 108,300
V1-V10 (VIRGO) 0.001 < z < 0.150 1139 103,400

distances and dim ones dominate nearby. A measurement
of the power spectrum on very large scales is therefore
statistically dominated by luminous galaxies whereas a
measurement on small scales is dominated by dim ones
(since they have much higher number density). Yet it is
well-known that luminous galaxies cluster more than dim
ones (e.g., Davis et al. 1988; Hamilton 1988; Norberg et
al. 2001; Zehavi et al. 2002; Verde et al. 2003), so when
comparing P (k) on large and small scales we are in effect
comparing apples with oranges, and may mistakenly con-
clude that the power spectrum is red-tilted (with a spec-
tral index n = 0.94, say) even if the truth is n = 1. So
far, no magnitude-limited galaxy power spectrum analysis
has been corrected for this effect. We do so in Section 5.
Although this effect is is not large in an absolute sense,
we find that it must nonetheless be included for precision
cosmology applications.

The first step is to quantify the luminosity-dependence
of bias. For this purpose, we define a series of volume-
limited samples as specified in Table 1, constructed by dis-
carding all galaxies that are too faint to be included at the
far limit or too bright to be included at the near limit. This
gives a radial selection function (Figure 3) that is constant
within the radial limits and zero elsewhere. The radial lim-
its are set so that galaxies at the far (near) radial limit and
the dim (luminous) end of the absolute magnitude range
in question have fluxes at the faint (bright) flux limits, re-
spectively. Because the flux range 14.5 < r < 17.5 spans
exactly three magnitudes, these subsamples overlap spa-
tially only with their nearest neighbor samples, and have a
near limit that would be equal to the far limit of the sample
that is two notches more luminous if it were not for evo-
lution and K-corrections. This is clear in Figures 5 and

6. These samples have the advantage that the measured
clustering is that of a well-defined set of objects whose se-
lection is redshift-independent. Although we have not ac-
counted for our surface brightness limits in defining these
samples, very few of even the lowest luminosity galaxies in
our sample are affected by the surface-brightness limits of
the survey (Blanton et al. 2002c; Strauss et al. 2002).

3. METHOD AND BASIC ANALYSIS

We now turn to our basic goal: accurately measuring
the shape of the matter power spectrum P (k) on large
scales using the data described above, i.e., measuring a
curve that equals the large-scale matter power spectrum
up to an unknown overall multiplicative bias factor that is
independent of scale. This involves four basic challenges:

1. Accounting for the complicated survey geometry

2. Correcting for the effect of redshift-space distortions

3. Correcting for bias effects, which as described in Sec-
tion 5 cause an artificial red-tilt in the power spec-
trum

4. Checking for potential systematic errors

Before delving into detail, let us summarize each of these
challenges and how we will tackle them.
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Fig. 4.— The distribution of 67,676 galaxies within 5◦ of the
Equatorial plane, color coded by their absolute magnitudes. Mr in
the figure refers to the absolute r-magnitude K-corrected to z = 0.1.
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Fig. 5.— The distribution of galaxies within 5◦ of the equatorial
plane is shown for the volume-limited subsamples L1, L3, L5 and L7
from Table 1.

3.1. Battle plan

3.1.1. Survey geometry and method of estimating power

It is well-known that since galaxies in a redshift survey
probe the underlying density field only in a finite volume,
the power spectrum estimated with traditional Fourier
methods (e.g., Percival et al. 2001; Feldman, Kaiser &
Peacock 1994), is complicated to interpret: it corresponds
to a smeared-out version of the true power spectrum, can
underestimate power on the largest scales due to the so-
called integral constraint (Peacock & Nicholson 1991) and
has correlated errors. We therefore measure power spec-
tra with an alternative, matrix-based approach which, al-
though more numerically demanding, has several advan-
tages on the large scales that are the focus of this pa-
per. It facilitates tests for radial and angular systematic
errors. If galaxies were faithful tracers of mass, then it
would produce unbiased minimum-variance power spec-
trum measurements with uncorrelated error bars that are
smaller than those from traditional Fourier methods. The
power smearing is quantified by window functions that
are both narrower than with traditional Fourier methods
and can be computed without need for approximations or
Monte-Carlo simulations. (We do, however, use Monte
Carlo simulations in Section 4 to verify that the method
and software work as advertised.)

3.1.2. Redshift space distortions

Our basic input data consist of galaxy positions r in
three-dimensional “redshift space”, where the comoving
distance r = |r| is that which would explain the observed
redshift if the galaxy were merely following the Hubble flow
of the expanding Universe. The same gravitational forces

-500 0 500

-500

0

500

Fig. 6.— The distribution of galaxies within 5◦ of the equatorial
plane is shown for the remaining four volume-limited subsamples
from Table 1, i.e., L2, L4, L6 and L8.
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that cause galaxies to cluster also cause them to move
relative to the Hubble flow, and these so-called peculiar
velocities make the clustering in redshift space anisotropic
(Kaiser 1987; Hamilton 1998). Although this effect can
be modeled and accounted for exactly on very large scales
on which the clustering is linear (Kaiser 1987), nonlinear
corrections cannot be neglected on some of the scales of
interest to us (Scoccimarro et al. 2001; Seljak 2001; Cole
et al. 1994; Hatton & Cole 1998). Section 4 is devoted to
dealing with this complication, going beyond the Kaiser
approximation with a three-pronged approach:

1. We precede our power spectrum analysis by a nonlin-
ear “finger-of-God” compression step with a tunable
threshold, to quantify the sensitivity of our results
to nonlinear galaxy groups and clusters.

2. We measure three power spectra (galaxy-galaxy, galaxy-
velocity and velocity-velocity spectra) rather than
one, quantifying the clustering anisotropy and allow-
ing the real-space power to be reconstructed beyond
linear order.

3. We analyze an extensive set of mock galaxy catalogs
to quantify the accuracy of our results and measure
how the non-linear correction factor grows toward
smaller scales.

Our mock analysis will also allow us to quantify the effects
of nonlinear clustering on the error bars and band-power
correlations. Step 1 is optional, and we present results
both with and without it.

3.1.3. Bias

All we can ever measure with galaxy redshift surveys
is galaxy clustering, whereas what we care about for con-
straining cosmological models is the clustering of the un-
derlying matter distribution. Our ability to do cosmol-
ogy with the real-space galaxy power spectrum Pgg(k) is
therefore only as good as our understanding of bias, i.e.,
the relation of Pgg(k) to the matter power spectrum P (k).
Pessimists have often argued that since we do not under-
stand galaxy formation at high precision, we cannot un-
derstand bias accurately either, and so galaxy surveys will
be relegated to a historical footnote, having no role to play
in the precision cosmology era. Optimists retort that no
matter how complicated the gas-dynamical and radiative
processes involved in galaxy formation may be, they have
only a finite spatial range (a few h−1Mpc, say), leading
to a generic prediction that bias on much larger scales
(> 20h−1Mpc, say) should be scale-independent for any
particular type of galaxy (Coles 1993; Fry and Gaztañaga
1993; Scherrer & Weinberg 1998; Mann, Peacock & Heav-
ens 1998; Coles, Melott & Munshi 1999; Heavens, Matar-
rese & Verde 1999; Blanton et al. 2000; Narayanan et al.
2000). This theoretical expectation is supported by visual
inspection of the galaxy distribution. Comparing early and
late type galaxies in the 2dF galaxy redshift survey (Pea-
cock 2003; Madgewick et al. 2003) shows that whereas the
small-scale distribution differs (ellipticals display a more
“skeletal” distribution than do cluster-shunning spirals),
their large-scale clustering patterns are indistinguishable.

We will devote Section 5 to the bias issue, arguing that
both the pessimists and the optimists have turned out to

be right: yes, biasing is indeed complicated on small scales
(where the galaxy power spectrum will therefore teach us
more about galaxy formation than about cosmology) but
no, this in no way prevents us from doing precision cosmol-
ogy with the galaxy power spectrum on very large scales.
Our main tool will be analyzing our volume-limited mag-
nitude subsamples, showing that their large-scale power
spectra are consistent with all having the same shape and
differing merely in amplitude.

Although the argument above for scale-independent bias
holds only for a volume-limited subsample, we wish to use
our full galaxy sample over a broad range of redshifts,
both to expand the range of k-scales probed and to reduce
shot noise. We will therefore use our measured luminosity-
dependence of bias to compute and remove the artificial
red tilt in our full magnitude-limited baseline sample.

In future papers, we will constrain galaxy bias empiri-
cally using clustering measurements on smaller scales (e.g.,
Zehavi et al. 2003), which will allow us to calculate the ef-
fects of scale-dependent bias on the power spectrum in the
non-linear regime, and thus to extend the measurement of
the matter power spectrum shape to smaller scales.

3.1.4. Systematic errors

As the old saying goes, the devil you know poses a lesser
threat than the devil you don’t. We will therefore devote
Section 6 to testing for the sort of effects that are not in-
cluded in our Monte Carlo simulations. This includes both
radial modulations (due to mis-estimates of evolution or
K-corrections) and angular modulations (due to effects
such as uncorrected dust extinction, variable observing
conditions, photometric calibration errors and fiber col-
lisions). Our tests use two basic approaches:

1. Analyzing subsets of galaxies: we compare the power
spectra from different parts of the sky (subsamples
A1-A4 from Table 1) and different distance ranges
(subsamples R1-R3) looking for inconsistencies.

2. Analyzing subsets of modes: we look for excess
power in purely angular and purely radial modes of
the density field, which act like lightning rods for
angular and radial modulations such as those men-
tioned above.

3.2. Three Step Power Spectrum Estimation

Our matrix-based power spectrum estimation approach
is described in Tegmark et al. (1998). It starts by expand-
ing the galaxy density field in a set of functions known
as Pseudo-Karhunen-Loève eigenmodes. This step com-
presses the data set into a much smaller size (from hun-
dreds of thousands of galaxy coordinates to a few thou-
sand expansion coefficients) while retaining the large-scale
cosmological information in which we are interested. It
also reduces the power spectrum estimation problem to a
mathematical form equivalent to that encountered in CMB
analysis, enabling us to take advantage of a powerful set
of matrix-based tools that have been fruitfully employed
in the CMB field. Our basic analysis in the remainder of
this section therefore consists of the following three steps:

1. Finger-of-god compression to remove redshift-space
distortions due to virialized structures; Section 3.3
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2. Pseudo-Karhunen-Loève eigenmode expansion; § 3.4

3. Power spectrum estimation using quadratic estima-
tors; § 3.6.

As mentioned, the third step measures not one but three
power spectra, encoding clustering anisotropy that con-
tains information about redshift space distortions. In this
section, we merely present the basic measurement of these
three curves, which involves no assumptions about linear-
ity, the nature of biasing or anything else. We then return
to modeling and interpreting these curves in terms of real-
space power in Section 4 and to bias modeling in Section 5.

3.3. Step 1: Finger-of-god compression

Since our analysis method is motivated by (although not
limited to) the linear Kaiser approximation for redshift
space distortions, it is crucial that we are able to empiri-
cally quantify our sensitivity to the so-called finger-of-god
(FOG) effect whereby radial velocities in virialized clusters
make them appear elongated along the line of sight. We
therefore start our analysis by compressing (isotropizing)
FOGs, as illustrated in Figure 7. The FOG compression
involves a tunable threshold density, and in Section 4 we
will study how the final results change as we gradually
change this threshold to include lesser or greater numbers
of FOGs.

We use a standard friends-of-friends algorithm, in which
two galaxies are considered friends, therefore in the same
cluster, if the density windowed through an ellipse 10 times
longer in the radial than transverse directions, centered on
the pair, exceeds a certain overdensity threshold. To avoid
linking well-separated galaxies in deep, sparsely sampled
parts of the survey, we impose the additional constraint
that friends should be closer than r⊥max = 5 h−1Mpc in
the transverse direction. The two conditions are combined
into the following single criterion: two galaxies separated
by r‖ in the radial direction and by r⊥ in the transverse
direction are considered friends if

[
(r‖/10)2 + r2⊥

]1/2
≤

[
4

3
πn̄(1 + δc) + r−3

⊥max

]−1/3

(1)

where n̄ is the 3D selection function at the position of
the pair, and δc is an overdensity threshold. Note that
δc represents not the overdensity of the pair as seen in
redshift space, but rather the overdensity of the pair af-
ter their radial separation has been reduced by a factor
of 10. Thus δc is intended to approximate the threshold
overdensity of a cluster in real space. We have chosen
r⊥max somewhat larger than the virial diameter of typical
clusters to be conservative, minimizing the risk of missing
FOGs — for our baseline threshold δc = 200, our results
are essentially unaffected by this choice of r⊥max. Having
identified a cluster by friends-of-friends in this fashion, we
measure the dispersion of galaxy positions about the cen-
ter of the cluster in both radial and transverse directions.
If the one-dimensional radial dispersion exceeds the trans-
verse dispersion, then the cluster is deemed a FOG, and
the FOG is then compressed radially so that the cluster
becomes round, that is, the transverse dispersion equals
the radial dispersion. We perform the entire analysis five
times, using density cutoffs 1+δc = ∞, 200, 100, 50 and

25, respectively; in our analyses below, we will explore
the sensitivity of our results to this cutoff. The infinite
threshold 1+δc = ∞ corresponds to no compression at all.

Figure 7 illustrates FOG compression with threshold
density 1+δc = 200, and unless explicitly stated other-
wise, all results presented in this paper are for this thresh-
old density. We make this choice to be on the safe side:
Bryan & Norman (1998) estimate that the overdensity of
a cluster at virialization is about 337 in a ΛCDM model,
rising further as the Universe expands and the background
density continues to drop.

Fig. 8.— A sample of four angular pseudo-KL (PKL) modes are
shown in Hammer-Aitoff projection in equatorial coordinates, with
grey representing zero weight, and lighter/darker shades indicating
positive/negative weight, respectively. Uniform blue/grey areas are
outside the observed region. From top to bottom, they are angular
modes 1 (the mean mode), 3, 35 and 286, and are seen to probe
progressively smaller angular scales.
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Fig. 7.— The effect of our Finger-of-god (FOG) removal is shown in part of the equatorial slice |δ| < 5◦ before (left) and after (right) FOG
compression. Top panels show all 67,626 galaxies in the slice, bottom panels show the 28,255 that are identified as belonging to FOGs (with
density threshold 200).
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3.4. Step 2: Pseudo-KL pixelization

The raw data consist of three-dimensional vectors rα,
α = 1, ..., Ngal, giving the measured positions of each
galaxy in redshift space, with the number of galaxies Ngal

given in Table 1 for each sample. As in Tegmark et al.
(1998), we expand the observed three-dimensional den-
sity field in a basis of Nx noise-orthonormal functions ψi,
i = 1, ..., Nx,

xi ≡

∫

V

n(r)

n̄(r)
ψi(r)d

3r (2)

and work with the Nx-dimensional data vector x of expan-
sion coefficients instead of the 3×Ngal numbers rα. Here,
n̄ is the three-dimensional selection function described in
Section 2, i.e., n̄(r)dV is the expected (not the observed)
number of galaxies in a volume dV about r in the absence
of clustering, and the integration is carried out over the
volume V of the sample where the selection function n̄(r)
is nonzero. We will frequently refer to the functions ψi as
“modes”. As we will see below, these modes play a role
quite analogous to pixels in CMB maps, with the variance
of xi depending linearly on the power spectrum that we
wish to measure.

Galaxies are (from a cosmological perspective) delta-
functions in space, so the integral in equation (2) reduces
to a discrete sum over galaxies. We do not rebin the galax-

Fig. 9.— A sample of six pseudo-KL modes are shown in the equa-
torial plane. Grey represents zero weight, and lighter/darker shades
indicate positive/negative weight, respectively. Uniform blue/grey
areas are outside the volume used. The bottom row gives examples
of special modes, showing a purely radial mode (left) and a purely
angular mode (right).

Fig. 10.— Relation between mode number i and physical scale k.
The variance 〈x2

i 〉 gets non-negative contributions from all k as per
equation (8). 50% of the contribution comes from below the solid
black curve, which we can interpret as the median k-value probed by
the ith mode. The shaded regions show percentiles of the contribu-
tion: from outside in, they show the k-ranges giving 99.98%, 99.8%,
98%, 80% and 60% of the contribution, respectively. Apart from the
first 8 special modes, the modes are ordered by increasing median
k-value.

Fig. 11.— The triangles show the 4000 elements xi of the data vec-
tor x (the pseudo-KL expansion coefficients) for the baseline galaxy
sample. If there were no clustering in the survey, merely shot noise,
they would have unit variance, and about 68% of them would lie
within the blue/dark grey band. If our prior power spectrum were
correct, then the standard deviation would be larger, as indicated by
the shaded yellow/light grey band. To reduce clutter, the modes are
(apart from the first 8 special modes), ordered by decreasing signal-
to-noise ratio, which corresponds approximately to the ordering by
scale in Figure 10.
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ies spatially, which would artificially degrade the resolu-
tion. It is convenient to isolate the mean density into a
single mode ψ1(r) = n̄(r), with amplitude

x1 =

∫
n(r)d3r = Ngal, (3)

and to arrange for all other modes to have zero mean

〈xi〉 =

∫
ψi(r)d

3r = 0 (i 6= 1). (4)

The covariance matrix of the vector x of amplitudes is a
sum of noise and signal terms

〈∆x∆xt〉 = C ≡ N + S. (5)

where the shot noise covariance matrix is given by

Nij =

∫

V

ψi(r)ψj(r)

n̄(r)
d3r (6)

and the signal covariance matrix is

Sij =

∫
ψ̂i(k)ψ̂j(k)∗Pgg(k)

d3k

(2π)3
(7)

in the absence of redshift-space distortions (which will be
included in Section 3.5). Here hats denote Fourier trans-
forms and the star denotes complex conjugation. Pgg(k)
is the (real-space) galaxy power spectrum, which for a

Fig. 12.— Gaussianity of fluctuations. The histogram shows the
distribution of the 4000 PKL coefficients xi from the previous figure

after dividing by their predicted standard deviation C
1/2

ii , assuming
our prior power spectrum. The histogram has been normalized to
have unit area. The solid curve shows a Gaussian of unit variance,
zero mean, and unit area.

random field of density fluctuations δ(r) is defined by

〈δ̂(k)δ̂(k′)∗〉 = (2π)3δDirac(k − k′)Pgg(k). We take the
functions ψi to have units of inverse volume, so x, N, S

and ψ̂i are all dimensionless.
Our method requires computing the signal covariance

matrix S, both to calculate power spectrum error bars and
to find the power spectrum estimator that minimizes them.
Equation (7) shows that this requires assuming a power
spectrum Pgg(k). For this spectrum, which we refer to as
our prior, we use a simple two-parameter fit as described
in Section B.4.1, whose parameters are determined from
our measurements by iterating the entire analysis.

As our functions ψi(r), we use the pseudo-Karhunen-
Loève (PKL) eigenmodes defined in Hamilton, Tegmark &
Padmanabhan (2000; hereafter “HTP00”) and Tegmark,
Hamilton & Xu (2002; hereafter “THX02”). The con-
struction of these PKL modes ψi(r) explicitly uses the
three-dimensional selection function n̄(r), but is model-
independent since it does not depend on the power spec-
trum.

To provide an intuitive feel for the nature of these
modes, a sample is plotted in Figure 8 and Figure 9. We
use these modes because they have the following desirable
properties:

1. They form a complete set of basis functions probing
successively smaller scales, so that a finite number of
them (we use the first 4000, for the reasons given in
Section B.4.2) allow essentially all information about
the density field on large scales to be distilled into
the vector x.

2. They are orthonormal with respect to the shot noise,
i.e., such that equation (6) gives N = I, the iden-
tity matrix. The construction of the modes thus de-
pends explicitly on the survey geometry as specified
by n̄(r), and ψi(r) = 0 in regions of space where
n̄(r) = 0.

3. They allow the covariance matrix S to be fairly
rapidly computed.

4. They are the product of an angular and a radial part,
i.e., take the separable form ψi(r) = ψi(r̂)ψi(r),
which accelerates numerical computations and helps
isolate radial and angular systematic problems.

5. A range of potential sources of systematic problems
are isolated into special modes that are orthogonal
to all other modes. This means that we can test for
the presence of such problems by looking for excess
power in these modes, and immunize against their
effects by discarding these modes.

We have four types of such special modes:

1. The very first mode is the mean density, ψ1(r) =
n̄(r). The mean mode is used in determining the
maximum likelihood normalization of the selection
function, but is then discarded from the analysis,
since it is impossible to measure the fluctuation of
the mean mode. The idea of solving the so-called
integral constraint problem by making all modes or-
thogonal to the mean (Eq. 4) goes back to Fisher et
al. (1993).
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2. Modes 2-8 are associated with the motion of the
Local Group through the Cosmic Microwave Back-
ground at 622 km/s towards (B1950 FK4) RA =
162◦, Dec = −27◦ (Lineweaver et al. 1996; Courteau
& van den Bergh 1999). To first order, these modes
are the only modes affected by mis-estimates of the
motion of the Local Group.

3. Purely radial modes (for example mode 468 in Fig-
ure 9) are to first order the only ones affected by
mis-estimates of the radial selection function n̄(r).

4. Purely angular modes (for example mode 859 in Fig-
ure 9) are to first order the only ones affected by mis-
estimates of the angular selection function n̄(r̂), as
may result from inadequate corrections for, e.g., ex-
tinction, the variable magnitude limit, the variable
magnitude completeness or photometric zero-point
offsets.

The computation of the modes in practice is described in
detail in THX02 and in even more detail in Hamilton &
Tegmark (2003).

The pixelized data vector x is shown in Figure 11.
This data compression step has thus distilled the large-
scale information about the galaxy density field from
3 × Ngal = 429,942 galaxy coordinates into 4000 PKL-
coefficients. The order of these coefficients is one of de-
creasing scale (increasing k) as is shown in Figure 10. If
there were no cosmological density fluctuations in the sur-
vey, merely Poisson fluctuations, the PKL-coefficients xi

would be uncorrelated with unit variance (since N = I),
so about 68% of them would be expected to lie within
the blue/dark grey band. Figure 11 shows that the fluc-
tuations are considerably larger than Poisson, especially
for the largest-scale modes (to the left), demonstrating
the obvious fact that cosmological density fluctuations are
present, as expected.

3.5. What we wish to measure: three power spectra, not
one

Following HTP00 and THX02, we will measure three
separate power spectra, whose ratios encode information
about clustering anisotropy due to redshift space distor-
tions. Let us now give their definition and some intuition
for how to interpret them.

On large scales where redshift space distortions can be
treated in the linear approximation (Kaiser 1987), the sig-
nal covariance matrix S in equation (5) can be generalized
from equation (7) and written in the form

S =

∫ ∞

0

[Pgg(k)Pgg(k) + Pgv(k)Pgv(k) + Pvv(k)Pvv(k)]
k2dk

(2π)3
,

(8)
where Pgg(k), Pgv(k) and Pvv(k) are three power spec-
tra defined in real space (as opposed to redshift space)
and Pgg(k), Pgv(k) and Pvv(k) are known dimensionless
matrix-valued functions. We will refer to these three power
spectra as the galaxy-galaxy power, the galaxy-velocity
power and the velocity-velocity power, respectively, or gg,
gv and vv for short. Specifically, Pgg(k) is the real-space
galaxy power spectrum, Pvv(k) is the velocity power spec-
trum and Pgv(k) is the cross-power between galaxies and

velocity. More rigorously, ‘velocity’ here refers to mi-
nus the velocity divergence ∇ · v, which in linear the-
ory is related to the mass (not galaxy) overdensity δ by
fδ+∇ ·v = 0, where ∇ denotes the comoving gradient in
velocity units. Here f ≈ Ω0.6

m is the dimensionless growth
rate for linear density perturbations (see Hamilton 2001).
The three matrix-valued functions are determined directly
from the modes ψi, i.e., by geometry alone:

(Pgg)ij =

∫
ψ̂i(k)ψ̂j(k)∗dΩk, (9)

(Pgv)ij =

∫
[ψ̂i(k)ζ̂j(k)∗ + ζ̂i(k)ψ̂j(k)∗]dΩk, (10)

(Pvv)ij =

∫
ζ̂i(k)ζ̂j(k)∗dΩk, (11)

in which the velocity mode ζ̂i(k) is related to the position

mode ψ̂i(k) by (Fisher, Scharf & Lahav 1994; Heavens &
Taylor 1995; Hamilton 1998 eq. 8.13)

ζi = M†ψi (12)

where M† is the Hermitian conjugate of the velocity part
of the linear redshift distortion operator. In the small-
angle, or distant observer, approximation, the operator M
takes the familiar Kaiser (1987) form, a diagonal operator
in Fourier space

M ≈ µ2
k

(13)

where µk ≡ k̂ · z is the cosine of the angle between the
wavevector k and the line of sight z. Here however we
do not assume the small-angle approximation, but rather
take into account the full radial nature of redshift distor-
tions. Radial redshift distortions destroy translation in-
variance, so that the radial redshift distortion operator is
no longer diagonal in Fourier space, as it is in the small-
angle approximation; indeed, the radial redshift distortion
operator takes a rather complicated form in Fourier space
(Hamilton 1998, eq. 4.37). The radial redshift distortion
operator takes a simpler form in real space, where M, ex-
pressed in the frame of the Local Group, can be written as
the integro-differential operator (Hamilton 1998 eq. 4.46)

M =

[
∂2

∂r2
+
α(r)r̂

r
.

(
∂

∂r
−

∂

∂r

∣∣∣∣
r=0

)]
∇−2 (14)

with α(r) the logarithmic derivative of r2 times the selec-
tion function n̄(r),

α(r) ≡
∂ ln[r2n̄(r)]

∂ ln r
. (15)

The ∂/∂r|
r=0 term inside parentheses in eq. (14), which

subtracts from the first term ∂/∂r its value at the position
r = 0 of the Local Group, is the term that arises from the
motion of the Local Group. The Hermitian conjugate M†

which enters equation (12) for the velocity mode ζi can be
written (Hamilton 1998 eq. 4.50)

M† = ∇−2r−2 ∂

∂r

(
∂

∂r
−
α(r)

r

)
r2−

r̂

r2
.
∂

∂r

∣∣∣∣
r=0

∇−2α(r)r

(16)
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in which the last term is again the term arising from the
motion of the Local Group.

Although the definition of these three power spectra
assumes that redshift distortions conform to the linear
Kaiser model, they measure useful information from the
data even if the linear model fails. In the small-angle
(distant observer) approximation, they reduce to simple
linear combinations of the monopole, quadrupole and hex-
adecapole power spectra in redshift space (Cole, Fisher &
Weinberg 1994; Hamilton 1998):



Pgg(k)

Pgv(k)

Pvv(k)


 =




1 − 1
2

3
8

0 3
4 − 15

8

0 0 35
8






P s

0 (k)

P s
2 (k)

P s
4 (k)


 . (17)

Whereas the vector on the right hand side is closer to the
measurements (and also more familiar in the literature),
the vector on the left hand side is closer to the physics of
linear redshift distortions. Indeed, inverting equation (17),



P s

0 (k)

P s
2 (k)

P s
4 (k)


 =




1 2
3

1
5

0 4
3

4
7

0 0 8
35






Pgg(k)

Pgv(k)

Pvv(k)


 , (18)

we see that we can use this last equation as an improved
definition of monopole, quadrupole and hexadecapole, re-
maining valid even in the regime where the small-angle ap-
proximation fails. For the reader more used to thinking in
terms of the multipole formalism, the bottom line is that
our main measurement Pgg(k) is basically the monopole
power minus half the quadrupole power plus three eights
of the hexadecapole power, as per equation (17).

Because redshift distortions displace galaxies only along
the line of sight, the transverse, or angular, power spec-
trum is completely unaffected by redshift distortions, a
point emphasized by Hamilton & Tegmark (2002). In
the small-angle approximation, the galaxy-galaxy power
spectrum equals the redshift space power spectrum in the
transverse direction,

Pgg(k) = P s(µk = 0) =
∑

ℓ even

(−1)ℓ/2(ℓ− 1)!!

ℓ!!
P s

ℓ (k),

(19)
which is true in all circumstances, linear or nonlinear, re-
gardless of the character of redshift distortions. The co-
efficients of the expansion (19) are the values of Legendre
polynomials Pℓ(µk) in the transverse direction µk = 0.
The first few terms of the expansion (19) are

Pgg(k) = P s
0(k)−

1

2
P s

2(k)+
3

8
P s

4(k)−
15

48
P s

6 (k)+ . . . , (20)

which shows that our linear estimate of Pgg(k) is effec-
tively the expansion (19) truncated at the ℓ = 4 harmonic,
as predicted by linear theory (Kaiser 1987). We expect
on general grounds that the linear estimate of Pgg(k) will
underestimate the true galaxy-galaxy power spectrum at
nonlinear scales (Hamilton & Tegmark 2002), although
this underestimate should be mitigated by FOG compres-
sion.

In Section 4, we will demonstrate with Monte Carlo sim-
ulations that Pgg faithfully recovers the true real-space

galaxy power spectrum on large scales, and we will quan-
tify what constitutes “large”, finding accurate recovery on
substantially smaller scales that those where the Kaiser
approximation is valid.

A wide range of approximations for Pgv and Pvv have
been introduced in the literature. Using our notation, the
Kaiser (1987) approximation becomes simply

Pgv(k) = β(k)r(k)Pgg(k), (21)

Pvv(k) = β(k)2Pgg(k), (22)

where β(k) ≡ f/b(k), b(k) is the bias factor, r(k) is the di-
mensionless correlation coefficient between the galaxy and
matter density (Dekel & Lahav 1999; Pen 1998; Tegmark
& Peebles 1998) and f ≈ Ω0.6

m was defined above. Since
both b and r can in principle depend on scale, we have
two unknown functions β(k) and r(k) that can in princi-
ple be determined uniquely from the two measured ratios
Pgv(k)/Pgg(k) and Pvv(k)/Pgg(k) in the Kaiser approx-
imation. Further popular approximations in the litera-
ture are that both b and r are constant, and most workers
also assume r = 1 despite some observational (Tegmark
& Bromley 1999; Blanton 2000) and simulational (Blan-
ton et al. 1999; Cen & Ostriker 2000; Somerville et al.
2001) evidence that r may be of the order of 0.9 for some
galaxies2.

We will not make any of these approximations in our
basic data analysis, simply reporting measurements of
Pgg(k), Pgv(k) and Pvv(k) from the SDSS data. In Sec-
tion 4 we use the approximation that ℓ > 4 anisotropies
are negligible, assessing its accuracy with Monte Carlo
simulations and tunable finger-of-god compression, but
the reader wishing to avoid approximations can simply fit
better simulations directly to our three measured curves.
Specifically, using an axis of a periodic cube as the line-
of-sight direction, so that the distant observer approxi-
mation holds perfectly, one can compute the monopole,
quadrupole, and hexadecapole components of the redshift-
space power spectrum and transform them to Pgg, Pgv, and
Pvv via equation (17).

3.6. Step 3: Power spectrum estimation

All our information about the SDSS density field is en-
coded in the 4000-dimensional vector x plotted in Fig-
ure 11, and equation (8) shows that the covariance matrix
of x depends linearly on the three power spectra that we
want to measure. We wish to invert equations (5) and (8)
to estimate the power spectra from the data vector. This
problem is mathematically equivalent to that of measuring
the power spectrum from a CMB map, and can be solved
optimally with so-called quadratic estimators (Tegmark
1997b; Bond et al. 2000). We describe our analysis method
in full detail in Appendix B. However, since it is important
for the interpretation, let us briefly review here how the
measurements are computed from the input data x.

2Although r < 1 is normally referred to as stochastic bias, this
does of course not imply any randomness in the galaxy formation
process, merely that additional factors besides the present-day dark
matter density may be important (gas temperature, say). The evi-
dence for r < 1 thus far comes from scales smaller than those that
are the focus of this paper. More details on the relationship between
our three power spectra and the stochastic bias formalism are given
in Section 3.4 of THX02.
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Fig. 13.— The minimum-variance quadratic estimators p̂i nomi-
nally measuring the galaxy-galaxy power spectrum (top), the galaxy-
velocity power spectrum (middle) and the velocity-velocity power
spectrum (bottom) for the baseline galaxy sample. They cannot
be directly interpreted as power spectrum measurements, since each
point probes a linear combination of all three power spectra over
a broad range of scales, typically centered at a k-value different
than the nominal k where it is plotted. Moreover, nearby points are
strongly correlated, causing this plot to overrepresent the amount of
information present in the data. The solid curves show the window-
convolved prior power spectrum Wp, and the dashed curve shows
the shot noise contribution subtracted out.

Fig. 14.— Decorrelated and disentangled measurements of the
galaxy-galaxy power spectrum (top), the galaxy-velocity power spec-
trum (middle) and the velocity-velocity power spectrum (bottom) for
the baseline galaxy sample. Each point is plotted at the k-value that
is the median of its window function, and the horizontal bars range
from the 20th to the 80th percentile of the window function. The
values of Pgg(k) are given in Table 3. From top to bottom, the three
curves shows our prior for Pgg(k), Pgv(k) and Pvv(k). Note that
most of the information in the survey is in the galaxy-galaxy spec-
trum. Band-power measurements with very low information content
have been binned into fewer (still uncorrelated) bands. All these
measurements are for our baseline FOG compression threshold of
200. Unlike Figure 13, these points are uncorrelated (affecting all
three panels) and the leakage between gg, gv and vv has been re-
moved (affecting mostly the lower panels), giving much larger (and
easier to interpret) error bars.
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We parameterize our three power spectra by their ampli-
tudes in 97 separate logarithmically spaced k-bands as de-
tailed in Appendix B, so our goal is to measure 3×97 = 291
band powers pi, i = 1, ..., 291. Quadratic estimators p̂i are
simply quadratic functions of the data vector x, and the
most general unbiased case can be written as

p̂i ≡ xtQix − tr [NQi], (23)

for some symmetric N ×N -dimensional matrices Qi; the
second term merely subtracts off the expected contribution
from the shot noise.

The basic idea behind quadratic estimators is that each
matrix Qi can be chosen to effectively Fourier transform
the density field, square the Fourier modes in the ith power
spectrum band and average the results together, thereby
probing the power spectrum on that scale. Grouping the
parameters pi and the estimators p̂i into vectors denoted
p and p̂, the expectation value and covariance of the mea-
surements is given by

〈p̂〉 = Wp, (24)

cov(p̂) ≡ 〈p̂p̂t〉 − 〈p̂〉〈p̂〉t = Σ, (25)

where the matrices W and Σ can be computed from the
Qi-matrices and the geometry alone via equations (B3)
and (B4) in Appendix B.

As detailed in Appendix B, there are several attractive
choices of Q-matrices, each giving different desirable prop-
erties to the matrices W and Σ. Figure 13 shows the
power spectrum measurements p̂ for the baseline galaxy
sample using the choice of Qi that gives the smallest er-
ror bars, and Figure 14 shows them using a better choice
described below.

Although Figure 13 looks impressive, it fails to convey
two important complications. The first is that the error
bars are strongly correlated between neighboring bands,
i.e., the covariance matrix Σ is far from diagonal. The
second complication involves the matrix W, known as the
window matrix. The Q-matrices are normalized so that
each row of the window matrix sums to unity. Equa-
tion (24) shows that this normalization enables us to in-
terpret each band power measurement p̂i as a weighted
average of the true power spectrum pj , the elements of
the ith row of W giving the weights (the so-called win-
dow function). In short, the window functions connect
our measurements p̂ to the underlying power spectrum
parameters p. The windows are plotted in Figure 15, and
we see that they are complicated in two different ways,
making Figure 13 hard to interpret:

1. Smearing: They have a non-zero width ∆k, so that
our estimate of the power on some scale k is really
the weighted average of the power over a range of
scales around k. In other words, Figure 13 shows
a measurement of the true power spectrum that has
been smoothed, convolved with rather broad window
functions.

2. Leakage: They mix the gg, gv and vv power spec-
tra, so that a nominal estimate of gv, say, is really
a weighted average of gg, gv and vv power. This is
why the signal-to-noise ratio of gv and vv appear so
high in Figure 13.

As described in Appendix B, both the correlation prob-
lem and the smearing problem can be tackled in one fell
swoop with a better choice of quadratic estimators that
give uncorrelated error bars and narrower window func-
tions, shown in Figure 16. This choice makes the covari-
ance matrix Σ for the measured vector p̂ diagonal (com-
bining shot noise and sample variance errors), so it is com-
pletely characterized by its diagonal elements, given by the
error bars in Table 2 and Figure 14. A clearer and less
cluttered view of a sample window function for this uncor-
related case is given in Figure 18 (top left panel). We see
that such a window is almost never negative, and tends to
be sharply peaked around the k-value that it is designed
to probe3.

Let us now turn to the remaining problem: leakage.
The leakage results from a combination of two effects: dif-
ficulties in separating the monopole, quadrupole and hex-
adecapole power given the complicated survey geometry,
and the mixing of these three multipoles given by equa-
tion (17). Figures 15, 16 and 17 show the ith window
function (the ith row of the W-matrix) as three curves
plotted in the top, middle and bottom panels, giving the
sensitivity of the estimator p̂i to gg, gv and vv power, re-
spectively. If there were no leakage, then all curves in the
six off-diagonal panels in these figures would be identically
zero. This is not the case, but the area under the curves
is much reduced in the off-diagonal panels, as is shown by
comparing the left-most and middle panels of Figure 19.
Switching to uncorrelated quadratic estimators causes a
substantial leakage reduction as a side benefit, but that
leakage is still non-negligible: for instance, an estimate of
the gg power is seen to give about 15% weight to Pgv and
about 2% weight to Pvv, with these percentages depending
only weakly on k.

As detailed in Appendix B, we can eliminate the leak-
age problem and measure one power spectrum, say Pgg(k),
without any assumptions about the other two by effec-
tively marginalizing over their amplitudes separately for
each k-band. This procedure is equivalent to yet another
choice of the Q-matrices, which we refer to as disentan-
gled. As seen in Figure 17 and the right panels of Fig-
ure 19, it eliminates leakage completely in the sense that all
unwanted (off-diagonal) window functions have zero area.
The basic idea of the disentanglement procedure is illus-
trated in Figure 18: since the gg, gv and vv components
of the window function have very similar shape, differing
essentially only in amplitude, it is possible to form linear
combinations of them that for all practical purposes van-
ish. In forming these linear combinations, we do introduce
statistical correlations between Pgg(k), Pgv(k) and Pvv(k)
at a given value of k; the values at different values of k
remain uncorrelated.

In summary, we have measured the three power spectra
3Its characteristic width ∆k corresponds roughly to the inverse

width of the survey volume in its narrowest direction (Tegmark
1995), so the windows will get narrower as the SDSS becomes more
complete and the thin sky slices seen in Figure 1 thicken and merge.
Windows further to the left are slightly narrower (when plotted on
a linear k-scale as opposed to the logarithmic scale used here), since
they probe more distant galaxies and hence a larger effective volume.
However, since our sample contains very few galaxies with z ≫ 0.2,
the window width ∆k approaches a constant as we keep moving to
the left in Figure 16, causing the windows to look wider on our log-
arithmic axis.
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Fig. 15.— Using the correlated minimum-variance estimators, the
window functions are shown for those k-bands with non-negligible
information content. The ith row of W typically peaks at the ith

band, the scale k that the band power estimator p̂i was designed to
probe. The three rows correspond to the estimators of gg, gv and
vv power and the three columns to their sensitivity to gg, gv and vv
power. For example, the window function of the quadratic estimator
targeting Pgv(k) at k = 0.1h/Mpc is given by the three curves in the
middle column peaking at k = 0.1h/Mpc (top, middle and bottom
panels), and the normalization is such that sum of the areas under
these three curves is unity.

Fig. 16.— Same as Figure 15, but using decorrelated estimators
(before disentanglement). Comparison with Figure 15 shows that
decorrelation makes all windows substantially narrower.

Fig. 17.— Same as Figure 16, but decorrelated and disentan-
gled estimators. Comparison with Figure 16 shows that disentan-
glement gives curves in the off-diagonal panels a vanishing average,
and almost completely eliminates leakage of gv and vv power into
estimators of gg power (two bottom panels in left column).

Fig. 18.— The window function for our measurement of the 49th
band of the galaxy-galaxy power is shown before (left) and after
(right) disentanglement. Whereas unwanted leakage of gv and vv
power is present initially, these unwanted window functions both
average to zero afterward. The success of this method hinges on the
fact that since the three initial functions (left) have similar shape,
it is possible to take linear combinations of them that almost vanish
(right). This procedure is repeated separately for each k.
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Pgg(k), Pgv(k) and Pvv(k), obtaining the results shown in
Figure 14. These basic measurements are given in Table 2
and are available at
http://www.hep.upenn.edu/∼max/sdss.html together with
their window matrix and likelihood calculation software,
incorporating the bias correction described in Section 5.
The measurements make no assumptions whatsoever about
redshift-space distortions, and the issue of whether the
density fluctuations are Gaussian affects only the error
bars, not the measurements themselves.

In the next section, we will model the effect of redshift
distortions and make what we argue is a more accurate es-
timate of Pgg(k). However, the conservative reader trust-
ing only her/his own modeling can in principle stop right
here and fit simulations directly to our measurements from
Figure 14, which are given in Table 2.

Fig. 19.— The leakage is shown for the correlated (left col-
umn), decorrelated (middle column) and disentangled (right column)
methods. From top to bottom within each box, the three bands
(blue/dark grey, red/grey and green/light grey) show the relative
contributions from gg, gv and vv power, respectively. From top to
bottom, the three rows are for estimators are for gg, gv and vv power,
respectively.

Table 2 – The real-space power spectrum Pgg(k) (top), Pgv(k)
(middle) and Pvv(k) (bottom) measured with the disentanglement
method. The units of the power are (h−1Mpc)3. ∆P is the 1σ error.
These values have been corrected for luminosity-dependent bias by
dividing by the square of the last column, and thus refer to the clus-
tering of L∗ galaxies. The k-column gives the median of the window
function and its 20th and 80th percentiles; the exact window func-
tions from http://www.hep.upenn.edu/∼max/sdss.html. should be
used for any quantitative analysis. The Pgg errors are uncorrelated
with one another, but are correlated with the Pgv and Pvv errors. We
recommend using column 2 for basic analysis. Column 3 is without
FOG removal (i.e., with threshold δc = ∞) and is therefore easier to
compare against numerical simulations.

k [h/Mpc] P P (⊥FOG) ∆P b

0.018+0.008
−0.004 42098 41081 28850 1.167

0.023+0.009
−0.005 28260 28924 16394 1.167

0.028+0.010
−0.005 20880 20508 15849 1.166

0.032+0.010
−0.006 16903 17097 12079 1.165

0.037+0.011
−0.007 12178 12119 9004 1.164

0.042+0.012
−0.008 11887 11996 6944 1.163

0.049+0.013
−0.009 13098 13094 5188 1.161

0.056+0.014
−0.010 13996 14003 3847 1.159

0.065+0.015
−0.012 10273 10333 2847 1.157

0.075+0.017
−0.014 6296 6366 2130 1.153

0.086+0.019
−0.016 9653 9687 1594 1.149

0.100+0.021
−0.018 5763 5814 1205 1.144

0.115+0.024
−0.021 6229 6273 921 1.139

0.132+0.027
−0.025 4693 4711 712 1.132

0.153+0.031
−0.030 3263 3321 554 1.123

0.176+0.035
−0.037 3778 3811 437 1.114

0.202+0.039
−0.045 2423 2428 356 1.104

0.232+0.043
−0.058 1891 1892 312 1.093

0.264+0.043
−0.075 952 947 304 1.082

0.290+0.047
−0.102 1340 1385 386 1.074

0.022+0.005
−0.005 52115 51536 28798 1.167

0.039+0.007
−0.009 17843 17716 10870 1.164

0.069+0.011
−0.015 5451 5233 4057 1.155

0.120+0.021
−0.028 2991 2746 1684 1.137

0.211+0.040
−0.047 1207 902 684 1.101

0.291+0.047
−0.039 537 319 720 1.074

0.067+0.040
−0.034 3700 3583 7712 1.156

0.278+0.128
−0.184 7 -81 1185 1.078
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4. ACCOUNTING FOR REDSHIFT SPACE DISTORTIONS

So far, we have measured the SDSS galaxy power spec-
trum and its redshift-space anisotropy, encoded in the
three functions Pgg(k), Pgv(k) and Pvv(k). In the present
section, we focus on this anisotropy to model, quantify and
correct for the effects of redshift-space distortions, produc-
ing an estimate of the true real-space galaxy power spec-
trum, P true

gg (k). We will use Monte-Carlo simulations to
assess the accuracy of two alternative approaches:

1. Disentanglement approach: perform FOG com-
pression, then simply use Pgg(k) from Figure 14 as
the estimator of P true

gg (k).

2. Modeling approach: perform FOG compression,
then make the Kaiser approximation of equations (21)
and (22) with the best-fit constant values of β and
r to eliminate Pgv(k) and Pvv(k) from the prob-
lem, solving for the 97 decorrelated measurements of
P true

gg (k) (see Appendix B and THX02 for details).

The difference between the two approaches is essentially
between marginalizing over the other two power spectra
(Pgv(k) and Pvv(k)) and modeling them. Both approaches
break down on small scales, so we focus on quantifying
their accuracy as a function of k. We will see that al-
though the disentanglement approach is more robust to
nonlinearities, the modeling approach has the advantage

Table 3 – The real-space power spectrum Pgg(k) in units of
(h−1Mpc)3 measured with the modeling method. ∆Pgg is the 1σ
error, uncorrelated between bands. These values have been cor-
rected for luminosity-dependent bias by dividing by the square of
the last column (see Section 5), and thus refer to the clustering of
L∗ galaxies. The k-column gives the median of the window function
and its 20th and 80th percentiles; the exact window functions from
http://www.hep.upenn.edu/∼max/sdss.html. should be used for any
quantitative analysis.

k [h/Mpc] Pgg ∆Pgg b

0.016+0.006
−0.003 21573 33320 1.168

0.018+0.006
−0.003 33255 24573 1.167

0.021+0.007
−0.004 13846 17712 1.167

0.024+0.007
−0.004 38361 13320 1.167

0.028+0.008
−0.005 24143 10047 1.166

0.032+0.008
−0.005 19709 7414 1.165

0.037+0.009
−0.006 12596 5486 1.164

0.043+0.010
−0.007 13559 4078 1.163

0.049+0.011
−0.008 18311 2974 1.161

0.057+0.012
−0.008 12081 2140 1.159

0.065+0.013
−0.010 9217 1580 1.156

0.075+0.015
−0.011 9751 1128 1.153

0.087+0.017
−0.012 9530 818 1.149

0.100+0.019
−0.014 6385 602 1.144

0.116+0.021
−0.016 5295 447 1.138

0.134+0.024
−0.019 4630 335 1.131

0.154+0.027
−0.022 3574 254 1.123

0.178+0.031
−0.027 3394 195 1.114

0.205+0.036
−0.032 2298 153 1.103

0.236+0.041
−0.039 1597 124 1.092

0.271+0.043
−0.048 1105 107 1.080

0.306+0.042
−0.075 1013 110 1.069

Fig. 20.— The blue, red and green bands show the 1σ allowed
ranges for the amplitude of the gg, gv and vv power, respectively,
relative to the prior gg spectrum, as a function of the maximum
wavenumber included in the fit. The sets of five black curves show the
best fit values using FOG compression with the five density thresh-
olds 1+δc = ∞ (no FOG compression), 200 (our baseline; heavy
curve), 100, 50 and 25 (successive curves go higher for gv and lower
for gg and vv).
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of roughly halving the error bars, corresponding to quadru-
pling the Fisher information. The gain comes from using
rather than discarding measured information about the
amplitudes of the gv and vv power spectra. We will argue
that the disentanglement method is overly conservative,
especially on extremely large scales like k < 0.05h/Mpc
where we need all the statistical power that we can get.

There are two separate sources of statistical bias in our
measurement that we will quantify below. The first is
that Pgg(k) will only equal the true real-space power on
scales on which the Kaiser approximation holds, generally
underestimating it on smaller scales. The second occurs
only in the modeling approach, which produces a biased
measurement of Pgg(k) if the model parameters β and r
are incorrect.

Let us begin our investigation by studying the real data,
then turn to Monte Carlo simulations to better understand
and quantify the results.

4.1. Results based on the data

Figure 14 shows that whereas we have precise measure-
ments of Pgg(k), we have rather limited information about
Pgv(k) and close to no information about Pvv(k). Fig-
ure 20 shows a slightly less noisy rendition of the same
information. Here we have taken all three curves to have
the shape of the prior power spectrum and plotted their
best-fit amplitudes relative to the prior. These fits are
performed cumulatively, using all measurements for all
wavenumbers ≤ k. The three bands give the 1σ allowed
ranges for gg, gv and vv, respectively. It is well-known that
as k increases, nonlinearities become more important and

Fig. 21.— The blue/grey band shows the 1σ allowed range for
rβ, assuming the shape of the prior Pgg(k) but marginalizing over
the power spectrum normalization, using FOG compression with our
baseline density threshold 1+δc = 200. From bottom to top, the
three curves show the best fit β for FOG thresholds 1+δc = ∞ (no
FOG compression), 200 (our baseline; heavy curve) and 100.

start reducing gv, eventually driving it negative. This is
because the FOG effect has the opposite sign of the linear
Kaiser infall, causing less rather than more radial power
(or larger rather than smaller radial correlations, for the
reader preferring real space over Fourier space). The fact
that Figure 20 does not show this effect is therefore a first
encouraging indication that nonlinearities have only a mi-
nor impact on our results over the range of scales that we
consider. Since we have used only 4000 PKL modes, most
of the information from scales k ≫ 0.1h/Mpc is excluded
from our analysis (cf., Figure 10). The bands in the fig-
ure therefore stop getting thinner for k ≫ 0.1h/Mpc. In
other words, the information contained in our data vector
x describes only a highly smoothed version of the density
field, where nonlinear effects are small.

The five thin lines in Figure 20 correspond to our five
FOG compression thresholds, and show several notewor-
thy things. First of all, changing the FOG threshold is
seen to have a strong effect on gv but almost no effect on
gg (the quantity that we really care about in this paper),
providing another encouraging indication that virialized
structures do not pose an unsurmountable problem for us.
Second, more aggressive FOG removal is seen to raise the
gv amplitude. This is the expected sign of the effect, since
it removes (and eventually over-corrects for) the FOG ef-
fect which suppresses gv. Third, the gg and gv curve pen-
tuplets are seen to diverge as k increases, as nonlinearities
become more important. For gv, the spread between the
baseline threshold 1 + δc = 200 and the rather extreme
neighboring thresholds (100 and ∞) equals the error bar
for k ∼ 0.3h/Mpc, suggesting that nonlinearity-related un-
certainties become comparable to statistical uncertainties
on this scale when trying to measure the redshift distor-
tion parameter β. For gg, on the other hand, the statistical
uncertainties dominate on all scales to which we are sensi-
tive. The optimal FOG compression threshold should be
expected to lie somewhere between our options 200 and
∞, since 1+δc = 200 is the approximate overdensity of a
cluster that has just formed, and many FOG systems will
have formed earlier and hence have higher overdensities.
The other thresholds plotted, i.e., 100, 50, and 25, are thus
more extreme and eventually unphysical — we have used
and plotted them merely to exaggerate and illustrate the
effect of FOG removal more clearly.

Since vv is so noisy, our main constraint on redshift
space distortion comes from the ratio of gv to gg power,
i.e., on rβ = Pgg/Pgv. Figure 21 shows our 1 − σ con-
straints on rβ as a function of the maximal k-band in-
cluded in a cumulative fit, discarding the vv information
to be conservative. The effect of FOG removal is seen
to be smaller than the statistical errors for all scales that
we consider. Our (loose) constraints agree well with a
previous β-measurement from earlier SDSS data (Zehavi
et al. 2002) and also with measurements from the 2dF-
GRS (Peacock et al. 2001; THX02) assuming that the bias
does not differ dramatically between the r-band selected
SDSS galaxies and B-band selected 2dF galaxies. We are
unable to break their near degeneracy and place strong
constraints on β and r separately, but a joint likelihood
analysis marginally favors r ∼ 1.

Our estimate of the real-space galaxy power spectrum
from the disentanglement approach is simply the top panel
of Figure 14. The corresponding estimate using the model
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Fig. 22.— The decorrelated real-space galaxy-galaxy power spectrum using the modeling method is shown (bottom panel) for the baseline
galaxy sample assuming β = 0.5 and r = 1. As discussed in the text, uncertainty in β and r contribute to an overall calibration uncertainty of
order 4% which is not included in these error bars. To remove scale-dependent bias caused by luminosity-dependent clustering, the measurements
have been divided by the square of the curve in the top panel, which shows the bias relative to L∗ galaxies. This means that the points in the
lower panel can be interpreted as the power spectrum of L∗ galaxies. The solid curve (bottom) is the best fit linear ΛCDM model of Section 5.
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approach is shown in Figure 22; the values are tabulated in
Table 3. Here we use β = 0.5 and r = 1, which provides a
good fit to our data. The measurements are also tabulated
in Tables 2 and 3. Changing these two parameters within
their measurement uncertainty causes an uncertainty of
4% in the overall normalization of the recovered gg power
spectrum (which is, of course, degenerate with a 2% change
in the galaxy bias). The corresponding window functions
are shown in Figure 24; compare with Figure 17.

To indicate how linear the fluctuations are on various
scales, Figure 23 shows the square root of the correspond-
ing dimensionless power spectrum, which can be crudely
interpreted as the rms fluctuation on that scale. This fluc-
tuation level is seen to drop below 10% on the largest
scales, k ∼

> 0.02h/Mpc, with the curve being strikingly dif-
ferent from a power law (more clearly seen in Figure 22)4.
The nonlinearity transition ∆ ∼ 1 is seen to occur around
k ∼ 0.2h/Mpc, but this is a crude estimate since what
matters is of course the fluctuation level of the matter,
not of the galaxies, and the two differ by the bias factor.
As detailed in Section 7, our L∗ galaxies have σ8 ≈ 0.93,
so if σ8 ≈ 0.8 for the matter as indicated by many re-
cent CMB, lensing and cluster studies (Lahav et al. 2002;
Wang et al. 2002; Bennett et al. 2003), the fluctuations
are slightly more linear than Figure 23 indicates.

To quantify the FOG effect on our recovered real-space
power spectrum, Figure 25 shows the ratio of the measured
power spectrum amplitude to its value with our baseline

4To make this more quantitative, we fit the measurements to a
parabola in (log k, log P ), obtaining a curvature d log P/d log k =
−1.28 ± 0.49. For a Markov Chain with 106 models, 99.9% had
α < 0, thereby driving yet another nail into the coffin of the fractal
Universe hypothesis and any other models predicting a power law
power spectrum (α = 0).

Fig. 23.— The rms density fluctuation amplitude ∆(k)1/2 derived
from the modeling method power spectrum of the previous figure,
where ∆(k) ≡ 4πPgg(k)[k/(2π)]3 and k is the effective k-value from
Table 2.

Fig. 24.— The SDSS window functions (rows of W) are shown
(top panel) using decorrelated estimators for the modeling method.
The ith row of W typically peaks at the ith band, the scale k that
the band power estimator p̂i was designed to probe. All curves have
been normalized to have the same area, so the highest peaks in-
dicate the scales where the window functions are narrowest. The
turnover in the envelope at k ∼ 0.1 h/Mpc reflects our running out
of information due to omission of modes probing smaller scales. The
32 2dFGRS window functions estimated by Percival et al. (2001)
are shown for comparison, plotted with the exact same conventions.
They correspond to correlated rather than uncorrelated measure-
ments. Their shapes and widths is seem to agree well with the SDSS
windows around k ∼ 0.1h/Mpc, becoming substantially wider on
larger scales; this is a key advantage of our analysis method.
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Fig. 25.— Effect of finger-of-god (FOG) compression on the
measured power spectrum. From bottom to top, the three solid
curves show the factor by which the measured fluctuation amplitude
Pgg(k)1/2 is increased by FOG compression with overdensity thresh-
olds ∞ (no compression), 200 (our baseline; horizontal line) and 100,
respectively, using the disentanglement method. The dashed curves
show the same ratios for the modeling method. To place these effects
in context, the relative 1σ measurement errors on the power spec-
trum amplitude are indicated by the yellow/light grey band for the
disentanglement method and by the cyan/grey band for the modeling
method.

FOG compression. Just as we saw in Figure 20, nonlinear-
ities become progressively more important toward smaller
scales. Quantitatively, the disentanglement method is seen
to be almost unaffected by FOG-compression. Over the
range 0.1h/Mpc < k < 0.2h/Mpc where the error bars are
smallest, changing the FOG compression threshold within
the rather extreme range 100 −∞ changes the measured
fluctuation amplitude by only about 1%, which should be
compared to statistical error bars of 8% or more. The
sensitivity of the modeling method to these nonlinear ef-
fects is slightly greater: 1% at k ∼ 0.1h/Mpc and 4%
at k ∼ 0.2h/Mpc, again letting the FOG threshold vary
across the rather extreme range 100 −∞.

4.2. Results from Monte Carlo simulations

We need to quantify how accurately what we measure,
Pgg(k), recovers what we really care about, i.e., the real
space matter power spectrum P (k). Nonlinear clustering
per se would not bias quadratic estimators of the power
spectrum, but how much do non-linearities in the redshift-
space distortions affect the results? Figure 25 shows that
the sensitivity of the Pgg(k)-measurement to FOG non-
linearities is around 1% at k ∼ 0.1h/Mpc, i.e., negligible
compared to our statistical measurement errors. Although
fingers of god are perhaps the most important way in which
nonlinear redshift distortions manifest themselves, mildly
nonlinear effects on larger scales are also important (Scoc-
cimarro et al. 2001; Scoccimarro 2003). To be prudent,
we therefore complement the above-mentioned tests with
a Monte Carlo analysis in which the true P (k) is known
and we can directly determine how well we recover it.

We use two suites of Monte Carlo simulations as sum-
marized in Table 1. The first consists of 275 simulations
constructed with the PThalos code (Scoccimarro & Sheth
2002), covering 1395 square degrees with an angular com-
pleteness map corresponding to the northern part of SDSS
(sample9, an earlier version of sample11 discussed in Ap-
pendix A. In short, this code is a fast approximate method
to build non-Gaussian density fields with the halo model.
It produces realistic correlation functions and includes
non-trivial galaxy biasing by placing galaxies within dark
matter halos with a prescribed halo occupation number as
a function of halo mass. The second suite of simulated sur-
veys is based on the Hubble volume ΛCDM n-body simu-
lation (Frenk et al. 2000; Evrard et al. 2002). 10 mock sur-
veys were produced by sparse-sampling different parts of
the simulation cube to reproduce the three-dimensional se-
lection function n̄(r) for SDSS sample8, so although these
mock surveys include fully nonlinear gravitational cluster-
ing, they have trivial light-to-mass bias with b = r = 1
(the “galaxies” are simply a random subset of the dark
matter particles).

Figure 26 shows that the average Pgg(k) recovered us-
ing the methodology described in this paper from the
PThalos simulations agrees with the matter P (k) on all
relevant scales to within the sensitivity we can test, as
expected given the above indications that the effect of
nonlinearities on Pgg is small. It also confirms that the
analysis pipeline produces unbiased results (this was also
demonstrated with extensive Monte Carlo simulations in
THX02). The mock surveys based on the Hubble Volume
simulation give similar agreement, although with larger
noise since there are only ten of them.
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Fig. 26.— Squares show the mean power spectrum Pgg(k) recov-
ered from 62 PThalos simulations by our analysis pipeline, using the
disentanglement method without FOG compression. If these squares
faithfully measure the average real-space matter power spectrum of
the simulations (solid line), then about 68% of them should lie in
the shaded band around this curve, whose width is given by the 1σ
errors computed by our pipeline divided by the square root of the
number of simulations. For comparison, the dotted curve shows the
linear power spectrum used as input for the simulations.

Fig. 27.— Power spectra from 275 PThalos mock catalogs, quan-
tifying how accurately our Pgg(k) statistic recovers the true power
spectrum. The thick black curve in the upper panel shows the real-
space power spectrum that we wish to recover, on a logarithmic
scale. The lower panel, on a linear scale, shows the same curves as
the upper panel, but divided by this reference model. The thin solid
black curve is the linear power spectrum that was taken as input for
the simulations. The thick blue/dark grey, red/grey and green/light
grey curves show the recovered gg, gv and vv power spectra and the
three dotted curves show the redshift space monopole, quadrupole
and hexadecapole power from top to bottom on left hand side (see
equation (17)), all curves being averages from 275 simulations using
about 106 galaxies each in the full simulation cube. Where they
are negative, the gv and quadrupole curves are plotted positive and
dashed in the upper panel.
The velocity dispersion is higher than in the real SDSS data and
no FOG compression has been performed, so this should be viewed
as a worst-case scenario. Nonetheless, the figure shows that Pgg(k)
(blue) recovers the true power spectrum (thick black) to within a
few percent at k = 0.1h/Mpc even though strong departures from
the Kaiser approximation (which predicts all curves being horizontal
in the lower panel) are evident in the Pgv(k) curve (thick red/grey)
on these scales. The reason that our method works so well is that
Pgg(k) recovers the transverse power (which is unaffected by redshift
distortions) beyond the Kaiser approximation, requiring merely that
ℓ ≥ 6 anisotropies are negligible.
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Since the possible biases that we wish to quantify are so
small (at the percent level), it is desirable to have still more
statistical testing power than these numerical experiments
provide. In particular, we wish to test the breakdown of
the Kaiser approximation as a function of scale; here we
are not concerned with the effects of the survey geometry.
For the 275 PThalos simulations, we therefore measure the
various power spectra using all of the roughly 106 galaxies
in each the full simulation cubes. (Since n̄(r) is now con-
stant and the boundary conditions are periodic, we do this
by simply using fast Fourier transforms, matching to the
Kaiser limit as k → 0 to reduce sample variance; see Scoc-
cimarro & Sheth 2002). No FOG correction was applied
to these simulations.

The results are shown in Figure 27. The upper panel
(on a logarithmic scale) shows the input power spectrum,
the quantities Pgg, P gv, and Pvv, as well as the monopole,
quadrupole, and hexadecapole P s

0 , P s
2 , and P s

4 as dotted
lines. The lower panel shows (on a linear scale) the ratio
of each of these quantities to the input power spectrum.
In the absence of nonlinear clustering and bias, each of
these lines would be horizontal. We see that Pgg(k) agrees
well with the real-space matter power spectrum P (k) on
large scales and progressively underestimates it more and
more as k increases. Quantitatively, it is off by 4% at
k ∼ 0.1h/Mpc and 6% at k ∼ 0.2h/Mpc, corresponding to
2% and 3% in fluctuation amplitude, respectively. These
numbers are thus in the same ballpark as those we found
from varying the FOG compression threshold above.

While the agreement is impressive, we note that PTHa-
los code may not have a fully accurate radial distribu-
tion of galaxies inside halos, nor is the halo occupation
number as a function of mass uniquely determined from
the observations. For these reasons one should exercise
caution when using these results in the nonlinear regime
(k ∼> 0.2h/Mpc), bearing in mind that different galaxy
distribution models may lead to larger differences between
the nonlinear matter power spectrum and Pgg.

Comparing Figure 27 with figures 14 and 20, it is strik-
ing that the simulations display stronger nonlinearity than
the real data. The simulations show Pgv(k) going negative
for k ∼> 0.14h/Mpc, whereas the data show no statisti-
cally significant detection of negative Pgv power on any
scale probed. This difference reflects the fact that the
small-scale velocity dispersion in the PThalos simulations
is larger than those actually observed. In other words, our
PThalos results should not be interpreted as our best esti-
mate of how large the nonlinear problems are, but rather
more as a worst-case scenario for the importance of non-
linear corrections.

In the Kaiser approximation, all curves in the lower
panel of Figure 27 would be horizontal lines. It is notewor-
thy that although the strong nonlinearities in the simula-
tions cause the Kaiser approximation for P s

0(k) and P s
2 (k)

(dotted lines in Figure 27) to break down on very large
scales, k ∼

> 0.02h/Mpc, the combination that represents
Pgg(k) remains an accurate estimate of P true

gg (k) down to
much smaller scales. We obtain similar results using the
analytic halo model approach of Seljak (2001) in place of
our simulations. Scoccimarro (2003) shows that this is in
fact a generic result: as long as the wavenumber k times
the rms pairwise velocity dispersion is smaller than the
Hubble parameter H , P true

gg (k) is accurately approximated

by equation (17) even if the coefficients in this expansion
are not well approximated by the Kaiser formula5. This
can be intuitively understood from the fact that Pgg(k) is
equal to transverse power under all circumstances, linear
or nonlinear, as exploited in Hamilton & Tegmark (2002).
As long as redshift distortions can be reasonably approx-
imated by quadrupole and hexadecapole distortions, then
the arbitrary functions Pgv(k) and Pvv(k) contain enough
freedom to model distortions completely, even if they do
not conform to the Kaiser model.

A third and final piece of evidence that nonlinearities
have no major effect on our measurement of the large-
scale real-space power comes from a direct comparison of
Pgg(k) recovered with our disentanglement and modeling
methods. Although the former has about twice as much
scatter as the latter, the two measurements show excel-
lent agreement. There is no hint of systematic differences
between the two on any scale.

The bottom line of this section is that although esti-
mates of the redshift space distortions (estimates of β,
the gv/gg ratio, the quadrupole-to-monopole ratio, etc.)
are very sensitive to nonlinear effects, our estimates of the
real-space matter power are not. We have argued that any
scale-dependent statistical bias in our Pgg(k) results due
to nonlinear redshift distortions (or errors in our code) is
smaller than a few percent for k < 0.1h/Mpc i.e., that
the systematic errors associated with this are negligible
compared with the statistical errors.

5Unfortunately, this useful result does not hold for Pgv(k) or
Pvv(k), so these two functions cannot be interpreted as simply the
galaxy-velocity and velocity-velocity power when nonlinearities are
important.
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5. ACCOUNTING FOR LUMINOSITY-DEPENDENT BIAS

We have now measured the real-space power spectrum
Pgg(k) of the SDSS galaxies, obtaining the results shown
in Figure 22. The goal of this section is to compute and
apply a small (∼ 10%) scale dependent bias correction,
producing a curve proportional to the underlying matter
power spectrum and usable for cosmological parameter es-
timation.

As discussed in Section 3.1.3, there is good reason to
believe that bias is complicated on small scales, yet simple
and essentially scale-independent on the extremely large
scales λ = 2π/k ∼> 60h−1Mpc that are the focus of this
paper6. However, since this scale-independent bias fac-
tor depends on luminosity (among other galaxy proper-
ties), we should expect to introduce an artificial scale-
dependence of bias from the magnitude-limited nature of
our sample.

It is easy to understand how luminosity dependent clus-
tering can masquerade as scale-dependent bias. Since lu-
minous galaxies dominate the sample at large distances
and dim ones dominate nearby, a measurement of Pgg(k)
on very large scales is statistically dominated by lumi-
nous galaxies whereas a measurement on small scales is
dominated by dim ones (which have much higher number
density). Since luminous galaxies cluster more than dim
ones, the measured power spectrum will therefore be red-
der than the matter power spectrum, with a lower ratio of
small-scale to large-scale power.

Below we will quantify and correct for this effect. We
emphasize that this is not intended to be the mother of all
bias treatments and the final word on the subject. Rather,
this artificial red-tilt is a small (∼ 10%) effect which has
never previously been quantified, and we simply wish to
make a first order estimate of it. We start by measur-
ing the luminosity dependence of bias using our volume-
limited subsamples in the next section, then use this to
compute the scale-dependent effect.

It has been long known (Davis & Geller 1976; Dressler
1980) that galaxy bias depends on other galaxy properties
as well, e.g., morphological type, color and environment.
Fortunately, the only intrinsic property which determines
whether a galaxy gets included in our baseline sample is
its luminosity, so we can ignore dependence on all other
properties for our present purposes (type dependence of
clustering is of course a fascinating subject of its own, and
will be the topic of future SDSS papers).

5.1. Measurement of the luminosity-dependence of bias

To quantify the luminosity-dependence of bias for the
SDSS galaxies, we repeat our entire analysis for each of
the volume-limited samples L2-L7 specified in Table 1 and
plotted in Section 2 (samples L1 and L8 contain too few
galaxies to be useful). The resulting power spectra are

6On large scales, bias can also introduce an additive (as opposed
to multiplicative) constant, related to halo shot noise, thereby af-
fecting the shape of the power spectrum on scales larger than the
turnover (Scherrer & Weinberg 1998; Seljak 2001; Durrer et al. 2003).
Although this effect is negligible for k ∼

> 0.003h−1Mpc, and is there-
fore unimportant for the present paper, it may be important for the
upcoming analysis of the SDSS luminous red galaxy (LRG) sample,
both because the halo shot noise effect is larger for such rare objects
and because LRGs probe P (k) out to larger scales than does the
main SDSS galaxy sample analyzed here.

Fig. 28.— The real-space power spectrum Pgg(k) is shown for
galaxies in six bins of absolute magnitude M0.1r detailed in Table
1, with the shading indicating 1 − σ uncertainty. All power spectra
have roughly the same shape, increasing in amplitude as the galax-
ies become more luminous. The dashed curve is the best fit linear
ΛCDM model (see text) normalized to σ8 = 1.

Fig. 29.— The bias relative to the linear ΛCDM model of the
previous figure is shown for galaxies in six bins of absolute magnitude
M0.1r. All six curves are consistent with being scale-independent,
the bias merely increasing in amplitude as the galaxies become more
luminous.
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shown in Figure 28. To avoid excessive clutter in this
figure, we plot the minimum variance power spectrum
estimate described in Appendix B.3.1. To indicate that
the measurement errors are correlated between k-bins, we
show the measurements as a shaded band rather than as
separate points, with the vertical thickness of the band cor-
responding to the 1σ uncertainty. (The bias fitting below
uses the full covariance matrix and is of course indepen-
dent of what plotting convention is used, as is χ2 computed
with equation (B8).)

Figure 28 shows that all power spectra have roughly
the same shape, increasing in amplitude as the galaxies
become more luminous. This is seen more clearly in Fig-
ure 29, where we have divided them all by the linear power
spectrum of the simple ΛCDM reference model described
below.

To quantify this similarity of shapes, we fit each of the
measured power spectra to the reference ΛCDM curve with
the amplitude freely adjustable. All six cases produce ac-
ceptable fits with reduced χ2 of order unity, and the cor-
responding best-fit normalizations are shown in Figure 30.

We want our reference model to provide an accurate
empirical characterization of the SDSS data with as few
parameters as possible. We choose it to be a flat scale-
invariant ΛCDM model with the baryon density h2Ωb =
0.024 preferred by WMAP (Bennett et al. 2003) and the
Hubble parameter h = 0.72 preferred by the HST key
project leaving Ωm as the only free parameter determining
its shape. We determine Ωm by the following iterative
procedure:

1. Given an Ωm-value, we compute the reference model
P (k) normalized to σ8 = 1.

2. Given the reference model, we fit for the six bias
factors plotted in Figure 30.

3. We fit these bias factors to a smooth curve b(M)/b∗ =
A+B(L/L∗)+C(M−M∗) shown in Figure 30 given
by the three parameters (A,B,C).

4. We compute the correction beff(k) for scale-dependent
bias shown in Figure 22 (top) as described below.

5. We compute the value of Ωm that best fits the bias-
corrected measurements in Figure 22 (bottom).

This procedure converges to within floating-point numer-
ical precision in merely a few iterations for starting val-
ues anywhere in the range 0.1 < Ωm < 1.0, yielding
Ωm = 0.300 and (A,B,C) = (0.895, 0.150,−0.040). The
basic reason for this robustness is that changing the shape
of the fiducial model changes beff(k)2 by a much smaller
amount, because of the smearing by the integrals below.

5.2. Correcting for the luminosity-dependence of bias

Above we quantified the well-known fact that the den-
sity field δM (r) of galaxies of absolute magnitude M is
more strongly clustered for larger luminosity (smaller ab-
solute magnitude M). Let us consider the simple bias
model

δM (r) = b(M)δ(r), (26)

where δ(r) is the field of matter fluctuations and b(M) is
the luminosity-dependent bias factor proportional to what

is plotted in Figure 30. Since our observed galaxy sample
mixes galaxies of various absolute magnitudes with some
probability distribution fM (M ; r), our observed density
field can be written

δobs(r) =

∫
fM (M ; r)δM (r)dM. (27)

This probability distribution fM (M ; r) is simply propor-
tional to the galaxy luminosity function Φ(M) over the
absolute magnitude range Mbri(r) < M < Mdim(r) where
the galaxy is observable at comoving distance r, zero oth-
erwise, and normalized to integrate to unity. Mbri(r) and
Mdim(r) are given by equation (A5) on inserting the appro-
priate absolute magnitude cuts from Table 1 (for instance,
the sample safe13 has Mmin = −23, Mmax = −18.5).
Substituting equation (26) into equation (27), we obtain

δobs(r) = beff(r)δ(r), (28)

where

beff(r) =

∫
fM (M ; r)b(M)dM

=

∫ Mbri(r)

Mdim(r) Φ(M)b(M)dM
∫ Mbri(r)

Mdim(r) Φ(M)dM
. (29)

We evaluate this expression using the SDSS luminosity
function measured in Blanton et al. (2002). The re-
sults are plotted in Figure 31, and the effective bias is

Fig. 30.— The squares show the measured bias of our SDSS
galaxies as a function of magnitude relative to b∗, the bias at M∗ =
−20.83 (vertical dotted line). The solid curve shows the fit to our
measurements described in the text, b(M)/b∗ = 0.895+0.150L/L∗−
0.040(M −M∗), and the dashed curve shows the corresponding fit of
Norberg et al. based on 2dFGRS data, b(M)/b∗ = 0.85 + 0.15L/L∗.
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Fig. 31.— The effective bias (equation 29; heavy curves) is seen to
increase with distance, reflecting the fact that more distant galaxies
are on average more luminous. The curves become shallower as the
range of absolute magnitudes in the sample is cut, going from safe0

(dashed; no cuts) to safe13 (solid; −23 < M0.1r < −18.5) to safe22

(dotted; −22 < M0.1r < −18). Our volume-limited samples simply
have beff (r) constant. The five thin curves show the relative weights
given to different distances when measuring P (k) for k = 0.03, 0.1,
0.3, 1 and 3h/Mpc using the safe13 radial selection function.

seen to increase with distance as expected. We see that
the curve beff(r) become shallower as the range of ab-
solute magnitudes in the sample is cut, so the samples
safe0, safe13 and safe22 are progressively less affected.
Our volume-limited samples by construction simply have
beff(r) = constant.

Bias is expected to depend not only on luminosity but
also on time (Fry 1996; Tegmark & Peebles 1998; Gi-
avalisco et al. 1998; Cen & Ostriker 2000; Blanton et al.
2000). In addition, the intrinsic matter clustering should
increase over time. Since the net result of these two coun-
teracting effects is likely to be smaller than the luminosity
effect at the low redshifts (z ∼< 0.2) that we are consid-
ering, this is difficult to measure separately. The same
applies to the small effect from the time-dependence of
the redshift-space distortion parameter β caused by the
time-dependence of Ωm and ΩΛ. Indeed, since typical lu-
minosity grows monotonically with distance, the distance-
dependent bias beff(r) plotted in Figure 31 should be ex-
pected to approximately include the combination of all
four effects, so that our analysis will to first order be cor-
rected for all of them.

Let us now estimate how beff(r) translates into k-dependent
bias in our measured power spectrum. We do this in the
FKP approximation (Feldman, Kaiser & Peacock 1994).
Here the density field δobs(r) is multiplied by a weight
function

φ(r) ∝
n̄(r)P (k)

1 + n̄(r)P (k)
(30)

Fig. 32.— The effective bias in the power spectrum measurement,
equation (37), is seen to decrease with wavenumber k, reflecting the
fact that low-k measurements are dominated by more distant and
luminous galaxies. The curves become shallower as the range of
absolute magnitudes in the sample is cut, going from safe0 (thick
dashed; no cuts) to safe13 (solid; −23 < M0.1r < −18.5) to safe22

(dotted; −22 < M0.1r < −18).
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and then Fourier transformed, giving
∫
φ(r)δobs(r)e

−ik·rd3r =

∫
φ(r)beff(r)δ(r)e−ik·rd3r

(31)
because of equation (28), so we see that we are simply
measuring the power spectrum using a modified effective
weight function, replacing φ by φbeff . It is well-known
(see Tegmark et al. 1998 for a review conforming to the

present notation) that the FKP estimate P̃ (k) of the three-
dimensional power spectrum P (k) satisfies

〈P̃ (k)〉 = (W ⋆ P )(k), (32)

i.e., that it probes the true power spectrum convolved
with a window function W (k). This window function is
the square modulus of the Fourier transform of the weight
function, so it is given by

W0(k) ≡ |φ̂(k)|2, W1(k) ≡ |φ̂beff(k)|2, (33)

where W0 applies if we ignore bias and W1 applies if we
take bias into account. According to equation (32), galaxy
bias therefore increases the measured power by a factor

beff(k)2 =
(W1 ⋆ P )(k)

(W0 ⋆ P )(k)
=

∫
W1(k

′)P (k − k′)d3k′∫
W0(k′)P (k − k′)d3k′

. (34)

The window function is normally narrower than the scale
on which the power spectrum varies appreciably, so we can
make the approximation of taking it out of the convolution
integral, obtaining simply

beff(k)2 =

∫
W1(k

′)d3k′∫
W0(k′)d3k′

=

∫
φ(r)2beff(r)2d3r∫

φ(r)2d3r
, (35)

where we used Parseval’s theorem
∫

|φ̂(k)|2d3k = (2π)3
∫

|φ(r)|2d3r (36)

in the last step. In summary, substituting equation (30),
we have shown that the effective bias as a function of
wavenumber is

beff(k) ≈




∫ (
n̄(r)P (k)

1+n̄(r)P (k)

)2

beff(r)2r3d ln r

∫ (
n̄(r)P (k)

1+n̄(r)P (k)

)2

r3d ln r




1/2

. (37)

The resulting curves beff(k) are plotted in Figure 32. As ex-
pected, the effective bias is seen to decrease with wavenum-
ber k, reflecting the fact that low-k measurements are
dominated by more distant and luminous galaxies. Just as
in the previous figure, the curves become shallower going
from safe0 to safe13 to safe22, as the range of absolute
magnitudes shrinks.

Note that if one treats P (k) as a constant in equa-
tion (37), then beff(k) becomes a constant independent
of k. Of the magnitude-limited galaxy survey analyses
of the last decade, essentially the only one using such a
constant weighting was the 2dFGRS analysis by Perci-
val et al. (2001). Thus one can minimize the luminos-
ity bias at the expense of increased statistical errors due

to suboptimal galaxy weighting (as shown by Feldman,
Kaiser & Peacock 1994, such uniform weighting is desirable
only for volume-limited surveys where the galaxy num-
ber density is constant). In this paper we have instead
used minimum-variance methods to measure the luminos-
ity bias and power spectrum jointly. For a detailed dis-
cussion of these issues which appeared after the original
version of this paper was submitted, see Percival et al.
(2003).

The bottom line of this section is that although luminosity-
dependent bias has only a small tilting effect on our mea-
sured SDSS power spectrum, we can and should correct for
it when doing precision cosmology, by simply dividing the
measured power spectrum by the square of the curve in the
top panel of Figure 22. This correction curve has a slope
around −10% per decade at k ∼ 0.2h/Mpc. This means
that fitting for cosmological parameters ignoring this effect
would give noticeably biased results. For instance, assum-
ing a power law primordial power spectrum of the form
kns , this would correspond to shifting the best fit spectral
index ns by an amount ∆ns ≈ −(2/ ln 10) × 10% ≈ −0.1,
and a more careful analysis in Section 7.3 shows the net
effect to be −0.06. To place this in context, the popular
stochastic eternal inflation model (Linde 1994) predicts
ns ≈ 0.96, i.e., a substantially smaller departure from the
ns = 1 scale-invariant case.

6. TESTS FOR SYSTEMATIC ERRORS IN THE DATA

The Monte Carlo experiments described in Section 4
provided an end-to-end validation of our method and our
software. In this section, we turn to potential systematic
errors in the SDSS data themselves. Examples of such
effects include radial modulations (due to mis-estimates
of evolution or K-corrections) and angular modulations
(due to effects such as uncorrected dust extinction, vari-
able observing conditions, photometric calibration errors
and fiber collisions) of the density field.

6.1. Analysis of subsets of galaxies

Since such effects would be expected to vary across
the sky (depending on, say, reddening, seasonally vari-
able baseline offsets or observing conditions such as seeing
and sky brightness), we repeat our entire analysis for four
different angular subsets of the sky (subsamples A1-A4
from Table 1) in search of inconsistencies. We subtract the
power spectrum measured south of the Galactic plane (A1)
from the power spectrum measured north of the Galactic
plane (A2) for k < 0.2h/Mpc using the modeling method,
and obtain a residual χ2 ≈ 16 for 19 degrees of freedom.
A similar comparison of the two disjoint northern regions
(A3 and A4) gives a residual χ2 ≈ 26, again for 19 de-
grees of freedom. Under the null hypothesis that a such a
pair of curves are independent measurements of the same
underlying power spectrum, the mean and standard devi-
ation is 〈χ2〉 = 19 and ∆χ2 = (2 × 19)1/2 ≈ 6, so these
residuals are −0.4 and +1.4 standard deviations away from
the expectation, respectively. In other words, there is no
significant evidence for discrepancies between the power
spectra measured in different parts of the sky.

The actual residuals are shown in Figure 33. Since our
measurements in different k-bands are uncorrelated, χ2 is
simply the sum of the square of what is plotted. The most
notable discrepancy is at k ∼ 0.05h/Mpc, where there is
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more power in A4 than in A3. This appears to be related
to a striking wall-like structure that is seen in the north-
ern galaxy distribution around z ∼ 0.08 (see Figure 5).
Although this “great blob” may be the largest coherent
structure yet observed, a first crude estimate suggests that
it is not inconsistent with Gaussian fluctuations: visual
inspection of the 275 PThalos simulations reveals similar
structures in more than 10% of the cases.

A similar comparison of the power spectra in the radial
subsamples R1-R3 is less useful, since this radial binning is
largely degenerate with the luminosity binning (Section 5),
so we test for radial systematics with mode subsets instead.

6.2. Analysis of subsets of modes

Because of their angular or radial nature, all poten-
tial systematic errors discussed above create excess power
mainly in the radial and angular modes. To quantify any
such excess, we therefore repeat our entire analysis with
all 233 special modes (27 radial modes, 199 angular modes
and 7 Local Group modes) deleted. The results of this test
are shown in Figure 34 and are very encouraging; the dif-
ferences are tiny. Any systematic errors adding power to
these special modes would cause the squares to lie system-
atically above the crosses, yet the squares fall below the
crosses for four out of the five leftmost bands, where such
systematics would be most important. Thus there is no
indication of excess radial or angular power in the data.

Figure 34 shows that removing the special modes re-
sults in a slight error bar increase on the largest scales
and essentially no change on smaller scales. This can be
readily understood geometrically. If we count the number

Fig. 33.— Comparison of power in different parts of the sky
defined by the angular subsamples A1-A4 in Table 1. Each curve
shows the difference of two power spectra divided by the error bar
on this quantity, so χ2 is simply the sum of the square of what is
plotted. χ2 per degree of freedom is 0.86 for A2-A1 (north versus
south) and 1.39 for A3-A4 (the two separate northern regions).

Fig. 34.— Effect of removing special modes. Black curve with
associated error bars shows our measured power spectrum Pgg(k)
from the modeling method using all 4000 PKL modes. Red squares
with error bars show the effect of removing the 234 special modes
corresponding to purely angular and purely radial fluctuations as
well as fluctuations associated with the motion of the Local Group
relative to the CMB rest frame. Any systematic errors adding power
to these special modes would cause the curve to lie systematically
above the squares.
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of modes that probe mainly scales k < k∗, then the num-
ber of purely radial, purely angular and arbitrary modes
will grow as k∗, k

2
∗ and k3

∗, respectively. This means that
“special” modes (radial and angular) will make up a larger
fraction of the total pool on large scales (at small k), and
that the purely radial ones will be outnumbered by the
purely angular ones.

Our treatment of spectroscopic fiber collisions described
in Appendix A is another source of potential angular/radial
problems. By assigning both members of some close pairs
(separated by less than 55′′, corresponding to 0.08h−1Mpc
at the mean depth of the survey) at the same redshift, we
overestimate the radial power on small scales. Zehavi et al.
(2002) perform extensive tests of this effect and show that
it is negligible on large scales considered in this paper. As a
further cross-check, we repeat our entire calculation with
all galaxies with such assigned redshifts removed. Since
this second approach is guaranteed to underestimate the
power, the two approaches will bracket the correct answer.
As expected based on the Zehavi et al. (2002) analysis,
we find no evidence that fiber collisions are boosting our
measured power spectrum on the smallest scales we probe
(k ∼ 0.3h/Mpc).

7. DISCUSSION AND CONCLUSIONS

7.1. Basic results

We have measured the shape of the real-space power
spectrum P (k) on large scales using the SDSS galaxy red-
shift catalog, paying particular attention to quantifying
and correcting for the effects of survey geometry, red-
shift space distortions and luminosity-dependent bias. Our
principal results are the estimates Pgg(k) of the real space
galaxy power spectrum which are listed in Tables 2 and 3
for the disentanglement and modeling methods, respec-
tively. As discussed in Section 4, the disentanglement
method is more robust, but the modeling method (Fig-
ure 22) yields smaller statistical errors and appears in our
tests to introduce little systematic error. Table 3 lists re-
sults both for FOG compression with δc = 200, which we
consider the most reliable choice for estimating the true
real space power spectrum, and for no FOG compression,
which is the case easiest to model in detail. Our estimation
procedure yields uncorrelated error bars, so the reported
errors in these tables can be used as a diagonal covariance
matrix when evaluating the likelihood for model fits. For
such fits, it is crucial to use the exact window functions,
which are available at
http://www.hep.upenn.edu/∼max/sdss.html together with
sample software for evaluating the SDSS likelihood func-
tion.

As noted in Section 4, uncertainties in the values of β
and r leave a 4% 1σ uncertainty in the overall normal-
ization of Pgg(k) with the modeling method, in addition
to the error bars on individual points. There is no cor-
responding normalization uncertainty for the disentangle-
ment method. Our tabulated power measurements have
all been corrected for the effect of luminosity-dependent
bias as discussed in Section 5. The correction b(k) used
is given in Tables 2 and 3, and is normalized so that our
quoted power measurements represent the power spectrum
of galaxies with absolute r-band magnitude M∗ ≈ −20.83;
the relative bias of galaxies as a function of luminosity can

be found in Figure 30.

7.2. Using our results

There are several levels at which one might use our re-
sults, depending on how conservative one wishes to be and
how much energy one has for theoretical modeling. The
mock catalog tests in Section 4.2 (Figure 27 in particu-
lar) suggest that our method is quite successful at correct-
ing for redshift space distortions to recover the real space
galaxy power spectrum P true

gg (k). However, there are no-
table departures from perfect recovery at k ∼

> 0.15h/Mpc,
and the tests are in any event carried out for a particular
choice of cosmology and galaxy bias model. The simplest
and least conservative way to use our results is to assume
that we have indeed recovered P true

gg (k) and to further as-
sume that on the scales of our measurement the galaxy
power spectrum is a scale-independent multiple of the lin-
ear theory matter power spectrum, Pgg(k) = b2∗P (k) where
b∗ represents the large scale bias factor of L∗ galaxies. The
agreement of the lines representing Pgg(k) and the linear
P (k) in Figure 27 suggests that this approach is probably
safe for k ∼

< 0.1h/Mpc, and that one can use the more
precise modeling estimates of Pgg(k) (Table 3) without in-
curring a systematic error that is significant relative to the
statistical errors of the current measurement. However,
our tests are not exhaustive, and it is possible that the
agreement of Pgg(k) and linear P (k) shapes in Figure 27
arises in part from a cancellation of non-linear gravita-
tional effects with errors in the redshift-space distortion
correction. This cancellation, in turn, might not hold for
other cosmological or galaxy bias models.

A second option is to assume that we have recovered
P true

gg (k) but not assume that this has the same shape as
the linear theory matter power spectrum. Here, for exam-
ple, one could use N-body simulations or analytic approxi-
mations to compute the non-linear, real space power spec-
trum, incorporating galaxy bias based on semi-analytic
galaxy formation calculations, hydrodynamic simulations,
or a “halo occupation” model constrained by other mea-
surements of galaxy clustering. Figure 27 again suggests
that this approach can be used safely for k ∼< 0.1h/Mpc
(and perhaps a bit further) without systematic errors that
exceed the statistical errors. One can also use the non-
linear matter power spectrum and a constant b, but there
is good reason to expect scale-dependent bias on scales
where non-linearity is significant (Hamilton & Tegmark
2002). Finally, the most cumbersome but most reliable
way to use our data is to follow the course suggested at
the end of Section 4: create redshift-space realizations
using non-linear simulations with galaxy bias, compute
the monopole, quadrupole, and hexadecapole components
of the redshift space power spectrum in the distant ob-
server approximation, and use equation (17) to convert
them to Pgg(k). These predictions should be compared
directly to the disentanglement estimates of Pgg(k), since
the redshift-space distortions have been incorporated into
the model rather than removed from the data. However,
by focusing on a quantity Pgg(k) that responds mainly to
real space clustering (exactly so in the linear regime), such
a comparison will be insensitive to moderate errors in the
redshift-space distortions incorporated in the theoretical
predictions. This last approach is still much simpler than
creating artificial SDSS catalogs and reproducing our es-
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timation method in its entirety, but it should be equally
valid.

7.3. Comparison to other results

Figure 35 compares our results from Table 3 (modeling
approach) with other measurements from galaxy surveys,
but must be interpreted with care. The UZC points may
contain excess large-scale power due to selection function
effects (Padmanabhan et al. 2000; THX02), and the an-
gular SDSS points measured from the early data release
sample are difficult to interpret because of their extremely
broad window functions. Only the SDSS, APM and angu-
lar SDSS points can be interpreted as measuring the large-
scale matter power spectrum with constant bias, since the
others have not been corrected for the red-tilting effect
of luminosity-dependent bias. The Percival et al. (2001)
2dFGRS analysis unfortunately cannot be directly plotted
in the figure because of its complicated window functions.

Figure 36 is the same as Figure 35, but restricted to a
comparison of decorrelated power spectra, those for SDSS,
2dFGRS and PSCz. Because the power spectra are decor-
related, it is fair to do “chi-by-eye” when examining this
Figure. The similarity in the bumps and wiggles between

Fig. 35.— Comparison with other galaxy power spectrum measure-
ments. Numerous caveats must be borne in mind when interpreting
this figure. Our SDSS power spectrum measurements are those from
Figure 22, corrected for the red-tilting effect of luminosity dependent
bias. The purely angular analyses of the APM survey (Efstathiou
& Moody 2001) and the SDSS (the points are from Tegmark et al.
2002 for galaxies in the magnitude range 21 < r∗ < 22 — see also
Dodelson et al. 2002) should also be free of this effect, but rep-
resent different mixtures of luminosities. The 2dFGRS points are
from the analysis of HTX02, and like the PSCz points (HTP00) and
the UZC points (THX02) have not been corrected for this effect,
whereas the Percival et al. 2dFGRS analysis should be unafflicted
by such red-tilting. The influential PD94 points (Table 1 from Pea-
cock & Dodds 1994), summarizing the state-of-the-art a decade ago,
are shown assuming IRAS bias of unity and the then fashionable
density parameter Ωm = 1.

Fig. 36.— Same as Figure 35, but restricted to a comparison
of decorrelated power spectra, those for SDSS, 2dFGRS and PSCz.
The similarity in the bumps and wiggles between the three power
spectra is intriguing.

Fig. 37.— Comparison of our results with other P (k) constraints.
The location of CMB, cluster, lensing and Lyα forest points in this
plane depends on the cosmic matter budget (and, for the CMB,
on the reionization optical depth τ), so requiring consistency with
SDSS constrains these cosmological parameters without assumptions
about the primordial power spectrum. This figure is for the case of a
“vanilla” flat scalar scale-invariant model with Ωm = 0.28, h = 0.72
and Ωb/Ωm = 0.16, τ = 0.17 (Spergel et al. 2003; Verde et al. 2003,
Tegmark et al. 2003b), assuming b∗ = 0.92 for the SDSS galaxies.
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the three power spectra is quite striking. Moreover, there
is an interesting degree of similarity with the power spec-
trum of the Abell/ACO cluster catalog (not shown) re-
ported by Miller & Batuski (2001). It is tempting to
see hints of baryonic oscillations in these wiggles. Indeed
Percival et al. (2001) in their analysis of the 2dFGRS,
and Miller et al. (2001a,b; see also Miller et al. 2002) in
their analysis of the Abell/ACO cluster (Miller & Batuski
(2001), APM cluster (Tadros, Efstathiou & Dalton 1998),
and PSCz surveys (HTP00), already concluded that their
data mildly preferred model power spectra with baryonic
oscillations over those without. However, the oscillations
at large scales evident in Figure 36, notably the dip at
k ∼ 0.035 hMpc−1 and bump at k ∼ 0.05 hMpc−1, are
substantially larger than predicted by the standard ΛCDM
concordance model illustrated in Figure 22; if confirmed,
such a feature would challenge the ΛCDM concordance
model with scale-invariant initial conditions. This prefer-
ence for a large baryon fraction is also seen in Figure 38
(details below) which, however, shows that our SDSS data
is nonetheless perfectly consistent with the concordance
baryon fraction — about one sixth of the 100,000 points
shown have a baryon fraction below the WMAP value of
17%.

Figure 38 also illustrates why galaxy clustering data is
so complementary to CMB measurements. The 100,000
red/grey points are from a Monte Carlo Markov Chain
analysis of the WMAP for simple flat scalar adiabatic
models parametrized by the densities of dark energy, dark
matter and baryronic matter, the spectral index and am-
plitude, and the reionization optical depth. As empha-
sized by Eisenstein et al. (1999) and Bridle et al. (2003),

Fig. 38.— Characterization of the SDSS power spectrum in terms
on constraints on the “shape parameter” hΩm and the baryon frac-
tion fb. Black points show 100,000 Markov Chain steps for SDSS,
red/grey points are for WMAP data.

WMAP alone cannot determine Ωm to better than a fac-
tor of two or so because of a strong degeneracy with other
parameters. Fortunately, the WMAP degeneracy banana
in Figure 38 is seen to be almost orthogonal to the SDSS
degeneracy, which means that combining the two measure-
ments dramatically tightens the constraints on all the pa-
rameters involved in the degeneracy — notably Ωm, h and
σ8.

To place our SDSS results in a larger context, Figure 37
compares them with other measurements of the matter
power spectrum P (k). Here the CMB, galaxy cluster, lens-
ing and Lyα forest results have been mapped into k-space
using the method of Tegmark & Zaldarriaga (2002), as-
suming the WMAP model given in the caption, and we
have assumed an SDSS bias b∗ = 1. The CMB data
combines the Boomerang, MAXIMA, DASI, CBI, VSA,
ACBAR and WMAP data as in Wang et al. (2002) with
the WMAP measurements (Hinshaw et al. 2003). The
cluster point reflects the spread in the recent literature
rather than any one quoted measurement. The lensing
data are from Hoekstra et al. (2002). The Lyα forest
points are from the Gnedin & Hamilton (2002) reanaly-
sis of the Croft et al. (1999) data.

We leave detailed investigation of the implications of
our measurement to other papers (by ourselves in Paper
II and, we hope, by others), since the primary goal of
this paper is the measurement itself. As a characteriza-
tion of our data, we will briefly indulge in the simplest of
the interpretive approaches described in Section 7.2. For
this purpose, we fit our 22 Pgg(k)-measurements derived
from the modeling method with δc = 200 using the linear
CDM power spectrum of Eisenstein & Hu (1999), fixing
the baryon fraction Ωb/Ωm = 0.17 and the Hubble param-
eter h = 0.72 as per the best fits from WMAP (Bennett
et al. 2003; Spergel et al. 2003; Verde et al. 2003) and
no massive neutrino contribution. If we further fix the
inflationary spectral index to ns = 1, then the shape of
P (k) is determined by the combination hΩm, and we find
hΩm = 0.201 ± 0.017 at 1σ, i.e., Ωm = 0.300± 0.018.

As discussed above, our modeling of nonlinear red-
shift space distortions is only accurate on large scales,
so we recommend not using the measurements with k >
0.2h/Mpc for cosmological analysis. In this spirit, we fit
the 19 Pgg(k)-measurements for k < 0.2h/Mpc to the two-
parameter model defined by the Smith et al. (2003) non-
linear power spectrum approximation using the Eisenstein
& Hu (1999) fit as above for the linear transfer function,
fixing the bias b∗ = 1. This gives the shape parameter
hΩm = 0.213 ± 0.0233 at 1σ, i.e., Ωm = 0.295 ± 0.0323.
This fit has χ2 = 15.6 for 19 − 2 = 17 effective degrees of
freedom, so this two-parameter model fit can be regarded
as an adequate representation of our results in compact
summary form. (Using a linear power spectrum model
would increase this Ωm-value by 0.043.) Figure 38, which
was commented on above, shows the result of repeating
this same fit after adding the baryon fraction as a third free
paramenter. Fixing the best-fit shape hΩm = 0.213, the
power spectrum amplitude corresponds to σ8 = 0.89±0.02
for L∗ galaxies after marginalizing over the redshift-space
distortion parameters β and r. Note that this normaliza-
tion is at the effective redshift of the survey, not for z = 0
galaxies.

If we fix Ωm at the best-fit value 0.291 and treat
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the spectral index as the free shape parameter, then we
find ns = 0.995 ± 0.049. Without our correction for
luminosity-dependent bias, the corresponding numbers are
ns = 0.933 ± 0.046, so the statistical errors are now small
enough for effects such as this to be important. Similarly,
Table 7 of Paper II shows that ignoring this correction
reduces the measured value of Ωm by 0.035.

Paper II presents a thorough analysis of the cosmo-
logical constraints from our P (k)-measurement, finding
them in good agreement with a “vanilla” flat adiabatic
ΛCDM model with neglibible tilt, running tilt, tensor
modes or massive neutrinos. Our P (k) measurement pro-
vides a powerful confirmation of the results reported by the
WMAP team, and more than halves the WMAP-only error
bars on some parameters, e.g., the matter density Ωm and
the Hubble parameter h. Paper II finds Ωm = 0.30± 0.04
from WMAP+SDSS when marginalizing over the other
“vanilla” parameters. This is about 1σ higher that when
using the 2dFGRS survey (which gave a slightly redder
P (k) slope than we found) — just the sort of statistical
difference one would expect from two completely indepen-
dent samples.

7.4. Outlook

Let us conclude by looking ahead. Galaxy surveys have
the potential to greatly improve the cosmological con-
straints from the cosmic microwave background by break-
ing degeneracies and providing cross-checks, so detailed
joint analysis of our measurements with WMAP and other
data sets will be worthwhile. In particular, detecting the
effect of baryons on P (k) (Tegmark 1997a; Goldberg &
Strauss 1998) can provide powerful constraints on the
Hubble parameter (Eisenstein et al. 1998) and accurate
determination of the shape of P (k) can place strong con-
straints on neutrino masses (Hu et al. 1998; Spergel et al.
2003; Hannestad 2003) and help pin down the primordial
power spectrum. Deeper surveys can also provide inter-
esting constraints on the evolution of clustering and dark
energy, and the SDSS luminous red galaxy (LRG) sam-
ple and photometric redshift catalog will complement spe-
cialized deep redshift surveys such as DEEP (Davis et al.
2001) and VIRMOS (Le Fèvre et al. 2001) in this regard.

Prospects are also good for reducing systematic uncer-
tainties involving both bias and redshift distortions. A key
virtue of having very large galaxy samples is it permits
accurate measurements for large numbers of subsamples.
For instance, repeating our analysis for subsamples based
on galaxy color or spectral type will provide a powerful
test of how scale-independent the bias is on large scales.
Moreover, empirical constraints from SDSS on redshift-
space distortions should improve substantially. These con-
straints are currently rather weak because the survey ge-
ometry consists largely of thin wedges; we have therefore
focused simply on modeling distortions well enough to re-
move their impact on the real space P (k) estimate. As
the survey area fills in and becomes more contiguous, we
expect to obtain interesting constraints on redshift distor-
tions that can be used to test and refine theoretical and
numerical models.

In addition to more careful modeling and combining
with other observational constraints, we anticipate several
complementary results from the SDSS in the near future,
such as cosmological constraints directly from KL-modes

(Pope et al. 2003), real space clustering on small scales
from the projected correlation function w(rp) (Zehavi et
al. 2003b), power spectrum measurements on large scales
using the luminous red galaxy sample and angular cluster-
ing measurements using photometric redshifts (Budavari
et al. 2003). This should help break degeneracies and pro-
vide cross-checks to test rather than assume the physics
underlying the cosmological model, thereby strengthening
the weakest link in post-WMAP cosmology.
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APPENDIX A

DATA AND DATA MODELING

In this Appendix, we provide a detailed description of
how our basic galaxy sample was processed, modeled and
split into the subsamples used in our power spectrum anal-
ysis.

A.1. The SDSS Galaxy Catalog

The SDSS (York et al. 2000) is producing imaging and
spectroscopic surveys over about a quarter of the Ce-
lestial Sphere. A dedicated 2.5m telescope at Apache
Point Observatory, Sunspot, New Mexico, images the sky
in five bands between 3,000AA and 10,000AA (u, g, r,
i, z; Fukugita et al. 1996) using a drift-scanning, mo-
saic CCD camera (Gunn et al. 1998), detecting objects
to a flux limit of r ∼ 22.5. The photometric quality of
the observations are tracked using an automatic photo-
metricity monitor (Hogg et al. 2001). One of the goals
is to spectroscopically observe 900,000 galaxies, (down to
rlim ≈ 17.77; Strauss et al. 2002), 100,000 Luminous Red
Galaxies (LRGs; Eisenstein et al. 2001), and 100,000 QSOs
(Richards et al. 2002). This spectroscopic follow-up uses
two digital spectrographs (Uomoto et al. 2003) on the same
telescope as the imaging camera. Other aspects of the sur-
vey are described in the Early Data Release (EDR) paper
(Stoughton et al. 2002).

The SDSS images are reduced and catalogs are produced
by the SDSS pipeline photo (Lupton et al. 2001), which
detects and measures objects, the sky background, and
the seeing conditions. As described in Smith et al. (2002),
magnitudes are calibrated to a standard star network ap-
proximately in the AB system. The astrometric calibra-
tion is also performed by an automatic pipeline which ob-
tains absolute positions to better than 0.1 arcsec rms per
coordinate (Pier et al. 2003).

Object fluxes are determined in several different ways
by photo, as described in Stoughton et al. (2002). The
primary measure of flux used for galaxies is the SDSS
Petrosian magnitude, a modified version of the quantity
proposed by Petrosian (1976). In the absence of seeing,
Petrosian magnitudes measure a constant fraction of a
galaxy’s light regardless of distance (or size). They are
described in greater detail by Blanton et al. (2001) and
Strauss et al. (2002). Another important measure of flux
for galaxies is the SDSS model magnitude, which is an
estimate of the magnitude using the better of a de Vau-
couleurs and an exponential fit to the image. Finally, the
SDSS also measures the flux in each object using the lo-
cal PSF as a template, which is the highest signal-to-noise
ratio measurement of flux for point sources.

Main sample target selection (Strauss et al. 2002) in-
volves star/galaxy separation, application of the flux limit,
application of the surface brightness limit and application
of the fiber magnitude limit. Expressed quantitatively, the
first three of these criteria are

rPSF − rmodel > slimit

rpetro < rlimit, and
µ50 < µ50,limit. (A1)

where rpetro is the dereddened Petrosian magnitude in the
r band (using the dust maps of Schlegel, Finkbeiner &

Davis 1998), rmodel is the model magnitude, rPSF is the
PSF magnitude, and µ50 is the Petrosian half-light surface
brightness of the object in the r-band. In practice, the val-
ues of the target selection parameters vary across the sur-
vey in a well-understood way, but for the bulk of the area,
they are slimit = 0.3, rlimit = 17.77, and µ50,limit = 24.5.
We note here that objects near the spectroscopic flux limit
are nearly five magnitudes brighter than the photometric
limit; that is, the fluxes are measured at a signal-to-noise
ratio of a few hundred.

Fibers are assigned to a set of circular tiles with a field of
view 1.49◦ in radius by an automatic tiling pipeline (Blan-
ton et al. 2003). The targets are observed using a 640 fiber
spectrograph on the same telescope as the imaging cam-
era. We extract one-dimensional spectra from the two-
dimensional spectrograms using a pipeline (idlspec2d)
created specifically for the SDSS instrumentation (Schlegel
et al. 2003); a further pipeline (specBS v4 9) fits for the
redshift of each spectrum. The official SDSS redshifts are
obtained from a different pipeline (Frieman et al. 2003).
The two independent versions provide a consistency check
on the redshift determination. They are consistent (for
galaxies) at over the 99% level.

Fibers on a single plate cannot be placed more closely
than 55′′. Thus, redshifts for both members of a close
galaxy pair can only be obtained in regions where tiles
overlap. If we did not take fiber collisions into account at
all, we would systematically underestimate correlations on
all scales. We correct this bias by assigning each galaxy
pair member whose redshift was not obtained because of a
fiber collision the same redshift as the pair member whose
redshift was measured.Thus, for 192,642 of the galaxies in
the full sample, a spectroscopic redshift is available, but for
12,801 (∼ 6%) we must assign redshifts according to this
prescription. Using the overlaps of multiple tiles, where
many of these pairs can be recovered, Zehavi et al. (2002)
have shown that this procedure works well on large scales,
and we confirm this conclusion with additional tests in
Section 6.

As of July 2002, the SDSS had imaged and targeted
2,873 deg2 of sky and taken 431,291 successful spectra (in-
cluding 323,126 spectra of galaxies) over 2,499 deg2 of that
area. We created a well-defined sample for calculating
large-scale structure and galaxy property statistics from
these data, known as Large-Scale Structure sample11.
sample11 consists of all of the photometry for all of the
targets over that area (as extracted from the internal SDSS
operational database), all of the spectroscopic results (as
output from idlspec2d), and a description of the angular
window function of the survey and the flux and surface
brightness limits used for galaxies in each area of the sky
(discussed more fully below). For most of the area, we
used the same version of the analysis software that was
used to create the target list. However, for the area cov-
ered by the Early Data Release (EDR; Stoughton et al.
2002) we used the version of the analysis software used for
that data release, since it was substantially better than the
early versions of the software used to target that area. For
photo, the most important piece of analysis software run
on the data, the versions used for the photometry range
from v5 0 to v5 2. The region covered by this sample is
similar to, but somewhat greater than, the region which
will be released in the SDSS Data Release 1 (DR1), (which
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will use a newer version of the software which among other
things improves the handling of large galaxies). For all
of the subsamples of sample11 defined here, we define a
bright limit of r = 14.5 (using Petrosian, dereddened mag-
nitudes) to exclude the spectroscopic bright limits imposed
in galaxy target selection as well as the possibility of poor
deblending of bright objects by photo (a problem for v5 2

and previous, though less so for v5 3).
We measure galaxy magnitudes through a set of band-

passes that are constant in the observer frame. These ob-
server frame magnitudes correspond to different rest-frame
magnitudes depending on the galaxy redshift. In order to
compare galaxies observed at different redshifts, we con-
vert all the magnitudes to a single fixed set of bandpasses
using the method of Blanton et al. (2002b) (kcorrect
v1 11). These routines fit a linear combination of four
spectral templates to each set of five magnitudes. The co-
efficient a0 of the first template is an estimate of the flux
in the rest-frame optical range (3500AA < λ < 7500AA),
the fractional contribution of the other coefficients a1/a0,
a2/a0, and a3/a0 characterize the spectral energy distribu-
tion of the galaxy. The most significant variation is along
a3/a0. Taking the sum of the templates and projecting it
onto filter responses, we can calculate the K-corrections
from the observed bandpass to any rest-frame bandpass.
In practice, for the rare galaxies in our sample around
redshift z ∼ 0.3 this procedure is unstable. Thus, for this
sample we fix the coefficients for all galaxies at redshifts
z > 0.28 to the average value for galaxies between red-
shifts 0.26 < z < 0.28, corresponding to the typical red
luminous galaxy SED. The median redshift of the sam-
ple is 0.1, so in this paper, we quote absolute magnitude
restframe bandpasses shifted blueward from the observa-
tory frame bandpasses by a factor 1.1 and denoted 0.1r
in r-band. This procedure minimizes the uncertainties in
the K-corrections, since galaxies near the median redshift
independent of their spectral energy distribution. For a
galaxy exactly at z = 0.1, the K-corrections are trivial.

In the remainder of this section, we model the three-
dimensional selection function n̄(r), which gives the ex-
pected number density of galaxies in the absence of clus-
tering as a function of three-dimensional position. For a
uniform magnitude limit, our selection function is separa-
ble into the product of an angular part and a radial part:

n̄(r) = n̄(r̂)n̄(r), (A2)

where r ≡ rr̂ and r̂ is a unit vector. The angular part n̄(r̂)
may take any value between 0 and 1, and gives the com-
pleteness as a function of position, i.e., the fraction of all
survey-selected galaxies for which survey quality redshifts
are actually obtained, while n̄(r) gives the radial selec-
tion function. As described in Section 6, this separability
allows powerful tests for possible systematic effects aris-
ing from extinction or calibration problems, which would
cause a purely angular modulation of density fluctuations,
or from a mis-estimate of the radial selection function,
which would cause a purely radial modulation of the den-
sity. The SDSS spectroscopic completeness is so good that
we find no evidence for weather-related effects breaking the
separability as in the 2dFGRS (Colless et al. 2001), and
therefore do not need to perform corrections for this effect
as in THX02. We will now describe our modeling of the
two factors n̄(r̂) and n̄(r) in turn.

A.2. The angular selection function

A.2.1. Specification

The geometry of the survey is somewhat complex due
to the fact that the imaging and spectroscopy programs
are carried out concurrently. To supply targets for the
spectroscopic program, periodically a “target chunk” of
imaging data is processed, calibrated, and has targets se-
lected. These target chunks never overlap, so that once
a set of targets is defined in a particular region of sky,
it never changes in that region. Thus, the task of deter-
mining the selection limits used in any region reduces to
tracking how the target chunks cover the sky. This list of
target chunks, their boundaries, and their selection criteria
is an important product of sample11.

To drill spectroscopic plates which have fibers on these
targets, we define “tiling chunks” which in principle can
overlap more than one target chunk. The tiling algorithm
(Blanton et al. 2003) is then run in order to position tiles
and assign fibers to them, after which plates are designed
(that is, any available fibers are assigned to various classes
of auxiliary targets as well as to sky and calibration stars)
and then drilled. In general, these tiling chunks will over-
lap because we want the chance to assign fibers to targets
which may have been in adjacent, earlier tiling chunks but
were not assigned a fiber. For a target to be covered by a
particular tile, it must be in the same tiling chunk as that
tile and be within the area of the tile itself (because the
edges of tiles can extend beyond the tiling chunk bound-
aries, a particular region of sky can be within the area of a
tile but not “covered” by it as defined here). We then di-
vide the survey into a number of “sectors”, regions which
are covered by a unique set of tiles and tiling chunks (fol-
lowing the nomenclature of the 2dFGRS, Percival et al.
2001, the “sectors” are the same as the “overlap regions”
defined in Blanton et al. 2001a). For instance, two tiles
overlapping each other but no other tiles give rise to three
sectors: the area covered only by the first tile, the area
covered only by the second tile, and the area covered by
both.

For sample11 the sky area is covered by 669 circular
tiles of diameter 2.98◦ and is split into 2489 disjoint sec-
tors. This decomposition is convenient since each sector
has a unique sampling rate. The sampling rate of a sec-
tor is defined as the number of redshifts of galaxy targets
obtained in the sector (including the galaxies assigned the
redshift of a neighbor because of a fiber collision) divided
by the number of galaxy targets in the sector. The sam-
pling rate so calculated is about 95% on average across the
survey area; about 95% of the survey area has complete-
ness greater than 90%. This is illustrated in Figure 1.

Two additional sets of geometric entities affect the an-
gular selection function n̄(r̂): it vanishes inside each of
55 rectangular holes (regions masked out due to bad data
quality or tiling bugs from early on in the survey) and
outside the official survey region defined by 83 rectangular
bounding boxes (the boundaries of the target chunks). In
summary, the angular selection function n̄(r̂) equals the
sampling fraction when inside the survey area, zero other-
wise.

An additional complication when evaluating n̄(r̂) is that
the above-mentioned geometric entities are specified in
three different coordinate systems in various combinations:



36

equatorial coordinates (RA,Dec), SDSS survey coordinates
(η, λ), SDSS great circle coordinates (µ, ν).

A.2.2. Spherical polygon representation

Fortunately, we can convert the specification of n̄(r̂) into
an equivalent but much simpler form in terms of spheri-
cal polygons which encodes all these complications. This
simplification is necessary since our power spectrum es-
timation method involves the complex task of expanding
n̄(r̂) in spherical harmonics.

All tile, hole and bounding box boundaries are simple
arcs on the Celestial Sphere, corresponding to the inter-
section of the sphere with some appropriate plane. This
means that any convex spherical polygon (a tile, hole,
bounding box, sector, etc.) can be defined as the inter-
section of a set of caps, where a cap is the set of directions
r̂ satisfying â · r̂ > b for some unit vector â and some
constant b ∈ [−1,1]. Think of a cap as the area defined
by a plane slicing a sphere. For instance, a tile is a single
cap, and a rectangular hole is the intersection of four caps.
The angular selection function n̄(r̂) (plotted in Figure 1)
can be clearly be represented as a list of non-overlapping
polygons such that n̄(r̂) is constant in each one. We
construct the polygon list using the Mangle software de-
scribed in Hamilton & Tegmark (2003) and available at
http://www/http://casa.colorado.edu/∼ajsh/mangle/, which
involves the following steps:

1. We generate a list of 807 polygons comprised of 669
tiles, 83 bounding boxes and 55 holes.

2. Whenever two gs intersect, we split them into non-
intersecting parts, thereby obtaining a longer list of
8484 non-overlapping polygons. Although slightly
tricky in practice, such an algorithm is easy to visu-
alize: if you draw all boundary lines on a sphere and
give it to a child as a coloring exercise, using four
crayons and not allowing identically colored neigh-
bors, you would soon be looking at such a list of
non-overlapping polygons.

3. We compute the completeness n(r̂) for each of these
new polygons, using the scheme described in Sec-
tion A.2.1.

4. We simplify the result by omitting polygons with
zero weight and merging adjacent polygons that have
identical weight.

The result is a list of 2914 polygons with a total (un-
weighted) area of 2499 square degrees, and an effective
(weighted) area

∫
n̄(r̂)dΩ of 2417 square degrees. These

polygons are sometimes sectors, sometimes parts of sec-
tors. This angular completeness map, and the polygons
into which it resolves, are illustrated in Figure 1.

A.3. Imposing a uniform magnitude limit

As mentioned above, the faint magnitude limit varies in
a known way from target chunk to target chunk, and is
hence a known constant in each of our 2914 polygons. We
construct a uniform galaxy sample that is complete down
to a limiting magnitude rlimit by applying the following
two cuts:

1. Reject all galaxies whose extinction-corrected mag-
nitude r is fainter than rlimit.

2. Reject all sectors whose extinction-corrected magni-
tude limit is brighter than rlimit.

Figure 39 shows the number of surviving galaxies as a func-
tion of rlimit. As we increase rlimit, the first cut eliminates
fewer galaxies whereas the second cut eliminates more
galaxies. The result is seen to be a curve with peaks at
17.50, 17.60, 17.62, 17.67 and 17.77, corresponding to the
five magnitude limits used in spectroscopic target selection
during the course of the survey. To maximize our sample
size, we choose to cut at the highest peak (rlimit = 17.50).
This gives a sample of 157,389 galaxies, denoted safe0 in
Table 1. Since the optimal cut of 17.50 also happens to
be the brightest magnitude limit used, we need not reject
any sectors (as per cut 2), so the angular footprint of this
uniform subsample has the same area as that of the full
sample. As the survey progresses further with its current
magnitude limit of 17.77, this will eventually become the
limit that yields the largest sample.

A.4. The radial selection function

It is important to estimate the radial selection function
n̄(r) as accurately as possible, since errors in it translate
into spurious large scale power. Our estimate is plotted in
Figure 2 and is computed as follows.

The radial window function of sample11 is defined by
the galaxy luminosity function, the flux limits, and the
absolute magnitude limits of the sample in question. As
noted above, our sample is limited at bright and faint ap-
parent magnitudes: 14.5 < r < 17.5. Thus, at any given
redshift we can only observe galaxies in a given absolute
magnitude range. When making cuts based on absolute
magnitude, we use the quantity 0.1r described in Blanton

Fig. 39.— Jagged curve shows number of galaxies surviving as a
function of uniform magnitude cut, and is approximately shaped as
the product of the two other curves, which corresponds to our two
cuts: the rising curve shows the number of galaxies whose magnitude
is brighter than rlimit and the falling staircase shaped curve shows
the number of galaxies in sectors whose magnitude limit is fainter
than rlimit.
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(2002), which refers to the r-band magnitude K-corrected
to its z = 0.1 value. Thus evolution-corrected absolute
magnitudes M are calculated from apparent magnitudes
m as follows:

M = m− DM(z) −K0.1(z) +Q(z), (A3)

Here K0.1(z) is the galaxy K-correction, as calculated us-
ing the code of Blanton et al. (2002), kcorrect v1 11.
DM(z) ≡ 5 log[r(1 + z)] + 25 is the distance modulus (see
Hogg 1999), where (1+z)r is the luminosity distance. Q(z)
accounts for the average evolution in galaxy luminosities
in the recent past, and we use the fit Q(z) = 1.6(z − 0.1)
. We will measure evolution in detail for different galaxy
types in future papers; however, for the present work, this
simple fit for the evolution of all galaxies is sufficient.

At any redshift, the fraction of objects in this absolute
magnitude range Mbri −Mdim that are in the sample is

f(z) =

∫ Mdim(z)

Mbri(z) Φ(M)dM
∫ Mdim(z)

Mbri(z)
Φ(M)dM

, (A4)

where Φ(M) is the luminosity function (number density of
objects per unit magnitude) and

Mbri(z) = max[Mmin, 14.5 − DM(z) −K0.1(z) +Q(z)],
Mdim(z) = min[Mmax, 17.5 − DM(z) −K0.1(z) +Q(z)].

In this context, K0.1(z) is determined using the mean
galaxy SED in the sample. Equations (A4) and (A5)
simply express the fact that a galaxy must lie in our ap-
parent magnitude range and in our absolute magnitude
range to be included in the sample. The luminosity func-
tion for our sample is determined in the manner described
by Blanton et al. (2001), using the step-wise maximum
likelihood method of Efstathiou et al. (1988), again using
Q(z) = 1.6(z − 0.1).

We transform the galaxy positions into the Local Group
frame assuming that the solar motion relative to the Local
Group is 306 km/s toward l = 99◦, b = −4◦ (Courteau &
van den Bergh 1999).

APPENDIX B

POWER SPECTRUM ESTIMATION DETAILS

In this Appendix, we describe our power spectrum esti-
mation procedure in sufficient detail for the reader inter-
ested in reproducing our analysis.

B.1. Parameterizing our problem

We parameterize the ratio of the three power spectra
Pgg(k), Pgv(k) and Pvv(k) to the prior as piecewise con-
stant functions, each with 97 “steps”. Doing this rather
than taking the power spectrum itself to be constant avoids
unnecessarily jagged spectra as discussed in THX02. The
resulting parameters pi are termed the band powers. As
long as the prior agrees fairly well with the measured
result, this has the advantage of giving better behaved
window functions, as described in Hamilton & Tegmark
(2000).

We group these 3 × 97 numbers into a 291-dimensional
vector p. We choose our 97 k-bands to be centered on log-

arithmically equispaced k-values ki = 10
i−65

16 h/Mpc, i =
1, ..., 97, i.e., ranging from 0.0001 h/Mpc to 100 h/Mpc.
This should provide fine enough k-resolution to resolve
any spectral features that may be present in the power
spectrum. For instance, baryon wiggles have a character-
istic scale of order ∆k ∼ 0.1, so we oversample the first one
around k ∼ 0.1 by a factor ∆k/(k26−k25) ∼ 16/ ln 10 ∼ 7.

This parameterization means that we can write the pixel
covariance matrix of equation (5) as

C =
291∑

i=0

piC, i, (B1)

where the derivative matrix C, i ≡ ∂C/∂pi is the contri-
bution to the covariance matrix from the ith band. For
notational convenience, we have included the noise term
in equation (B1) by defining C,0 ≡ N, corresponding to
an extra dummy parameter p0 = 1 giving the shot noise
normalization.

B.2. Quadratic estimator basics

Quadratic estimators were originally derived for galaxy
survey applications (Hamilton 1997ab). They were accel-
erated and first applied to CMB analysis (Tegmark 1997b;
Bond, Jaffe & Knox 2000), and have been a cornerstone
of almost all recent CMB power spectrum analyses.

Our quadratic estimators p̂i defined by equation (23)
are designed to measure the corresponding parameters pi.
We choose the Q-matrices to be of the form

Qi =
1

2

m∑

j=1

MijC
−1C,i C

−1 (B2)

where m = 291 is the number of bands (power spectrum
parameters). M is an m × m matrix that we will spec-
ify below. In the approximation that the pixelized data
has a Gaussian probability distribution (a good approxi-
mation in our case, because we are mostly in the linear
regime), the choice of equation (B2) has been shown to
be lossless, distilling all the power spectrum information
from the original data set into the quadratic estimator vec-
tor p̂ (Tegmark 1997b). This is true for any choice of the
matrix M as long as it is invertible: the result using a
different matrix M′ could always be computed afterwards
by multiplying the vector p̂ by M′M−1.

The quadratic estimators p̂i have the additional advan-
tage (as compared with, e.g., maximum-likelihood estima-
tors) that their statistical properties are easy to compute:
their mean and covariance are given by equations (24)
and (25), where the window matrix W and the covariance
matrix Σ are

Wij = tr [QiC,j ] , (B3)

Σij = 2 tr [QiCQjC]. (B4)

Substituting equation (B2), this gives

W = MF, (B5)

Σ = MFMt, (B6)
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where F is the Fisher information matrix (Fisher 1935;
Tegmark et al. 1997)

Fij =
1

2
tr

[
C−1C,i C

−1C,j
]
. (B7)

In conclusion, the quadratic estimator method takes the
vector x and its covariance matrix C from Figure 11 and
compresses it into the shorter vector p̂ in Figure 14 and its
covariance matrix while retaining essentially all the cos-
mological information.

B.3. Quadratic estimator variants: choosing the
M-matrix

For the purpose of fitting models p to our measurements
p̂, we are already done — equations (24) and (25) tell us
how to compute χ2 for any given p, and the result

χ2 = (p̂− 〈p̂〉)tΣ−1(p̂− 〈p̂〉)t (B8)

is independent of the choice of M. However, since one
of the key goals of our analysis is to provide model-
independent measurement of the three power spectra them-
selves, the choice of M is crucial. Ideally, we would
like both uncorrelated error bars (diagonal Σ) and well-
behaved (narrow, unimodal and non-negative) window
functions W that do not mix the three power spectra,
W = I being the ideal.

There are two separate issues of interest when choos-
ing M. The first involves the tradeoff between making
Σ well-behaved and making W well-behaved. The sec-
ond involves the complication that we are measuring three
power spectra rather than one, and that quadratic estima-
tors tend to mix them, with estimators of one spectrum
being contaminated by “leakage” from another. The fol-
lowing two subsections discuss these two issues in turn.
For all choices below, we wish each window function (row
of W) to sum to unity so that we can interpret p̂i as mea-
suring a weighted average of the true power. Because of
equation (B5), the rows of M are therefore normalized to
satisfy ∑

j

(MF)ij = 1 (B9)

for all i.

B.3.1. Correlated, anticorrelated and uncorrelated band
powers

There are a number of interesting choices of M that
each have their pros and cons (Tegmark & Hamilton 1998;
Hamilton & Tegmark 2000). The simple choice where M
is diagonal gives the “best guess” estimates in the sense
of having minimum variance (Hamilton 1997a; Tegmark
1997a; Bond, Jaffe & Knox 2000), and also has the advan-
tage of being independent of the number of bands used in
the limit of high spectral resolution. It was used for Fig-
ures 13 and 15. Here the window functions are simply the
rows of the Fisher matrix, and are seen to be rather broad.
All entries of F are guaranteed to be positive as proven in
PTH01, which means not only that all windows are pos-
itive (which is good) but also that all measurements are
positively correlated (which is bad).

Another interesting choice is (Tegmark 1997b) M =
F−1, which gives W = I. In other words, all window func-
tions are Kronecker delta functions, and p̂ gives completely

unbiased estimates of the band powers, with 〈p̂i〉 = pi re-
gardless of what values the other band powers take. This
gives an estimate p̂ similar to the maximum-likelihood
method (Tegmark et al. 1998), and the covariance ma-
trix of equation (25) reduces to F−1. A serious drawback
of this choice is that that if we have sampled the power
spectrum on a scale finer than the inverse survey size in an
attempt to retain all information about wiggles etc., this
covariance matrix tends to give substantially larger error

bars (∆pi ≡ M
1/2
ii = [(F−1)ii]

1/2) than the first method,
anti-correlated between neighboring bands.

The two above-mentioned choices for M both tend to
produce correlations between the band power error bars.
The minimum-variance choice generally gives positive cor-
relations, since the Fisher matrix cannot have negative el-
ements, whereas the unbiased choice tends to give anticor-
relation between neighboring bands. The choice (Tegmark
& Hamilton 1998; Hamilton & Tegmark 2000) M = F−1/2

with the rows renormalized has the attractive property of
making the errors uncorrelated, with the covariance ma-
trix of equation (25) diagonal. The corresponding window
functions W are plotted in Figure 16, and are seen to be
quite well-behaved, even narrower than those in Figure 15
while remaining positive in almost all cases.7 This choice,
which is the one we make in this paper, is a compromise
between the two first ones: it narrows the minimum vari-
ance window functions at the cost of only a small noise
increase, with uncorrelated noise as an extra bonus. The
minimum-variance band power estimators are essentially
a smoothed version of the uncorrelated ones, and their
lower variance was paid for by correlations which reduced
the effective number of independent measurements.

B.3.2. Disentangling the three power spectra

The fact that we are measuring three power spectra
rather than one introduces an additional complication. As
illustrated by Figure 18, an estimate of the power in one
of the three spectra generally picks up unwanted contri-
butions (“leakage”) from the other two, making it compli-
cated to interpret. Although the above-mentioned F−1-
method in principle eliminates leakage completely (since
it gives W = I), the cost in terms of increased error bars
is found to be prohibitive. We therefore follow HTP00 and
THX02 in adopting the following procedure for disentan-
gling the three power spectra: For each of the 97 k-bands,
we take linear combinations of the gg, gv and vv mea-
surements such that the unwanted parts of the window
functions average to zero. This procedure is mathemati-
cally identical to that used in Tegmark & de Oliveira-Costa
(2001) for separating different types of CMB polarization,
so the interested reader is referred there for the explicit
equations. For the reader familiar with Bayesian statistics,
our disentanglement procedure is tantamount to marginal-
izing over the amplitudes of the other two power spectra,
separately for each band.

The procedure is illustrated in Figure 18, and by con-
struction has the property that leakage is completely elim-

7The reader interested in mathematical challenges will be inter-
ested to know that it remains a mystery to the authors why this
F−1/2 method works so well. We have been unable to prove that
the resulting window matrix F1/2 has no negative elements (indeed,
counterexamples can be constructed), yet the method works like
magic in practice in all LSS and CMB applications we have tried.
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inated if the true power has the same shape (not necessar-
ily the same amplitude) as the prior. We find that this
method works quite well (in the sense that the unwanted
windows do not merely average to zero) for the most ac-
curately measured band powers, in particular the central
parts of the gg-spectrum, with slightly poorer leakage elim-
ination for bands with larger error bars.

The window functions plotted in Figure 24 are the gg-
windows after disentanglement. Note that although our
disentanglement introduces correlations between the gg,
gv and vv measurements for a given k-band, different k-
bands remain uncorrelated.

B.4. Numerical issues

Our analysis pipeline has a few “knobs” that can be set
in more than one way. This section discusses the sensitiv-
ity to such settings.

B.4.1. The prior

The analysis method employed assumes a “prior” power
spectrum via equation (B1), both to compute band power
error bars and to find the galaxy pair weighting that min-
imizes them. An iterative approach was adopted start-
ing with a simple BBKS model for Pgg(k) (Bardeen et al.
1986), then shifting it vertically and horizontally to better
fit the resulting measurements and recomputing the mea-
surements a second time. As priors for Pgv(k) and Pvv(k)
we use equations (21) and (22) with r = 1 and β = 0.5,
which provides a good fit to the measurements.

To what extent does this choice of prior affect the re-
sults? On purely theoretical grounds (e.g., Tegmark, Tay-
lor & Heavens 1997), one expects a grossly incorrect prior
to give unbiased results but with unnecessarily large vari-
ance. If the prior is too high, the sample-variance contri-
bution to error bars will be overestimated and vice versa.
This hypothesis has been extensively tested and confirmed
in the context of power spectrum measurements from both

Fig. 40.— Numerical convergence. The figure shows for how many
of our 4000 PKL modes the numerical calculations are converged to
accurately measure the power up to a given wavenumber k. From
left to right, the 12 curves correspond to truncation at ℓcut =20, 40,
60, 80, 100, 120, 140, 160, 180, 200, 220 and 240.

the Cosmic Microwave Background (e.g., Bunn 1995) and
galaxy redshift surveys (PTH01), confirming that the cor-
rect result is recovered on average even when using a
grossly incorrect prior. In our case, the prior by construc-
tion agrees quite well with the actual measurements (see
Figure 14), so the quoted error bars should be reliable as
well.

B.4.2. Effect of changing the number of PKL modes

We have limited our analysis to the first N = 4000 PKL
modes whose angular part is spanned by spherical harmon-
ics with ℓ ≤ 40. This choice was a tradeoff between the de-
sire to capture as much information as possible about the
galaxy survey and the need to stay away from small scales
where non-linear effects invalidate the Kaiser approxima-
tion to redshift distortions. To quantify our sensitivity to
these choices, we repeated the entire analysis using the
first 500, 1000, 2000 and 4000 modes. Our power spec-
trum measurements on the very largest scales were recov-
ered even with merely 500 modes. As we added more and
more modes (more and more small-scale information), the
power measurements converged to those in Figure 14 for
larger and larger k. Figure 10 shows that our 4000 PKL
modes are all rather insensitive to cosmological informa-
tion for k ∼

> 0.2.

B.4.3. Convergence issues

A key step in our analysis pipeline is the computation
of the matrices Pi ≡ ∂Σ/∂pi that give the contribution
to the signal covariance matrix § from the ith band power.
This computation involves a summation over multipoles ℓ
that should, strictly speaking, run from ℓ = 0 to ℓ = ∞,
since the angular completeness map itself has sharp edges
involving harmonics to ℓ = ∞. In practice, this summa-
tion must of course be truncated at some finite multipole
ℓcut. To quantify the effect of this truncation, we plot the
diagonal elements of the P-matrices as a function of ℓcut

and study how they converge as ℓcut increases. We define
a given PKL-mode as having converged by some multipole
if subsequent ℓ-values contribute less than 1% of its vari-
ance. Figure 40 plots the number of usable PKL-modes
as a function of wavenumber k, defining a mode to be us-
able for our analysis only if it is converged for all smaller
wavenumbers k′ < k for all three power flavors (Pgg, Pgv

and Pvv). We use ℓcut = 260 in our final analysis, since this
guarantees that all 4000 modes are usable for wavenum-
bers k in the range 0−0.7 h/Mpc, i.e., comfortably beyond
the large scales 0−0.3 h/Mpc that are the focus of this pa-
per. With this cutoff, the computation of the P-matrices
(which scales as ℓ2cut asymptotically), took about a week
on a 2 GHz linux workstation. As a further test, we re-
peated our entire analysis with ℓcut = 120 and obtained
almost indistinguishable power spectra.
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Le Fèvre, O. et al. 2001, Deep
Fields; S. Cristiani, A. Renzini, R.E. Williams;Dordrecht;Springer;236

Linde, A. 1994, Sci. Am., 271, 32
Lineweaver, C. H., Tenorio, L., Smoot, G. F., Keegstra, P., Banday,

A. J., & Lubin, P. 1996, ApJ, 470, 38
Lupton, R. H., Gunn, J. E., Ivezić, Z., Knapp, G. R., Kent, S.,
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